Curriculum- R23

B.Tech in Civil Engineering

Effective for 2023 Admission Batch Onwards

L – Lecture; T- Tutorial; P- Practical [1L=1Cr, 1T=1Cr, 1P =0.5 Cr]

		1	stYear 1st	Semester					
Sl.No.	Broad Category	Category	Course Code	Course Title		Hours p week L T P			Credits
			A. THEOL	RY			•		
1	ENGG	Major	CE101	Introduction to Civil Engineering	3	0	0	3	3
2	SCI	Multidisciplinary	PH(CE)101	Engineering Physics	3	0	0	3	3
3	SCI	Multidisciplinary	M(CE)101	Engineering Mathematics-I	3	0	0	3	3
4	ENGG	Minor	EE(CE)101	Basic Electric Engineering	3	0	0	3	3
5	HUM	Value added course	HU(CE)101	Environmental science	2	0	0	2	2
6	HUM	Value added course	HU(CE)102	Indian Knowledge System	1	0	0	1	1
			B. PRAC	ГІСАL					
7	ENGG	Major	CE191	Engineering Graphics & Design Lab	0	0	3	3	1.5
8	SCI	Skill Enhancement Course	PH(CE)191	Engineering Physics Lab	0	0	3	3	1.5
9	ENGG	Minor	EE(CE)191	Basic Electrical Engineering Lab	0	0	3	3	1.5
10	ENGG	Skill enhancement course	HU(CE)191	Technical report writing and language lab	0	0	3	3	1.5
10	HUM	Ability Enhancement Course	HU(CE)192	Competencies in Social Skills	0	0	2	2	1
	•	Total of Theory, Prac	tical and Man	latory Activities/Courses				29	22

^{*}HUM: Humanities; ENGG: Engineering; SCI: Science; MC: Mandatory Activities/Courses
*'Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines

			1stYear2	^{1d} Semester					
Sl.	Broad	Category	Course	Course Title	Н	ours]	per v	week	Credit
No.	Category		Code		L	T	P	Total	S
			A.TI	IEORY					
1	ENGG	Major	CE201	Engineering Mechanics	3	0	0	3	3
2	SCI	Multidisciplinary	CH(CE)201	Engineering Chemistry	2	0	0	2	2
3	SCI	Multidisciplinary	M(CE)201	Engineering Mathematics –II	3	0	0	3	3
4	HUM	Ability Enhancement Course	HU(CE)201	Professional Communication	2	0	0	2	2
5	HUM	Value Added Course	HU(CE)202	Values and Ethics	2	0	0	2	2
6	ним	Value Added Course	HU(CE)203	Constitution of India	1	0	0	1	1
			B.PRACT	ICAL					
7	SCI	Skill enhancement Course	CH(CE)291	Engineering Chemistry Lab	0	0	2	2	1.0
8	ENGG	Skill enhancement Course	ME(CE)291	Workshop & Manufacturing Practices Lab	0	0	3	3	1.5
9	ENGG	Major	CE291	Auto cad Lad	0	0	3	3	1.5
10	HUM Ability Enhancement Course HU(CE)292 Communication Lab O 0 2						2	1	
	Total of Theory, Practical and Mandatory Activities/Courses								

^{*&#}x27;Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines

			2 nd Y	Year3 rd Semester					
Sl.	Broad	Category	Course Code	Course	Н	ours p	er we	ek	Credits
No.	Categor v		Code	Title	L	T P		Tota	1
	1 3			A. THEORY					'
1	ENGG	Major	CE301	Surveying	3	0	0	3	3
2	ENGG	Major	CE302	Building Materials and Construction	2	0	0	2	2
3	ENGG	Major	CE303	Strength of Materials	3	0	0	3	3
4	ENGG	Major	CE304	Engineering Geology	2	0	0	2	2
5	ENGG	Minor	CS(CE)301	Computer Fundaments and prgramming	3	0	0	3	3
6	ENGG	Minor	CE305	Composite Materials	3	0	0	3	3
			B. P.	RACTICAL					
6	ENGG	Major	CE391	Surveying Lab	0	0	3	3	1.5
7	ENGG	Major	CE392	Engineering Geology Lab	0	0	3	3	1.5
8	ENGG	Skill enhancemen t Course	CS(CE)391	Computer Fundaments and prgramming Lab	0	0	3	3	1.5
9	ENGG	Major	CE393	Building Planning and drawing Lab	0	0	2	2	1.0
10	HUM	Ability Enhancemen t Course	HU(CE)391	Life skill	0	0	1	1	0.5
	To	tal of Theory	, Practical and	Mandatory Activities/Cou	rses			28	22.0

^{*&#}x27;Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines.

	2nd Year 4th Semester										
Sl.	Broad Category	Category	Course Code	Course	Н	ours p	er we	ek	Credits		
No.	category	category	couc	Title	L	T	P	Total			
				A. THEORY							
1	ENGG	Major	CE401	Concrete Technology	3	0	0	3	3		
2	ENGG	Major	CE402	Structural Analysis	4	0	0	4	4		
3	ENGG	Major	CE403	Soil Mechanics	3	0	0	3	3		
4	ENGG	Minor	M(CE)401	Numerical Methods	3	0	0	3	3		
	B. PRACTICAL										
5	ENGG	Major	CE491	Concrete Technology Lab	0	0	3	3	1.5		
6	ENGG	Major	CE492	Soil Mechanics Lab-I	0	0	3	3	1.5		
7	ENGG	Major	CE493	Quantity Surveying, Specifications and Valuation	0	0	2	2	1.0		
8	ENGG	Minor	CS(CE)491	Numerical Methods Lab	0	0	3	3	1.5		
9	ENGG	Internship	CE494	Industrial Training (min 1 weeks)	0	0	2	2	1.0		
10	НИМ	Ability Enhancemen t Course	HU(CE)491	Quantitative Aptitude: Numerical & Logical reasoning	1	0	0	1	0.5		
	Total of Theory, Practical and Mandatory Activities/Courses								20		

^{*&#}x27;Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines.

	3 rd Year5 th Semester										
Sl. No.	Broad Category	Category	Course Code	Course Title	Н	ours	per v	veek	Credits		
					L	Т	P	Total			
				A. THEORY							
1	ENGG	Major	CE501	Structural Design-I	3	0	0	3	3		
2	ENGG	Major	CE502	Foundation Engineering	3	0	0	3	3		
3	ENGG	Major	CE503	Highway and Transportation Engineering	3	0	0	3	3		
4	ENGG	Major	CE504	Environmental Engineering	3	0	0	3	3		
5	ENGG	Minor	CE505	Instrumentation & Sensor Technologies for Civil Engineering Applications B. Surveying & Geomatics Application of IOT in civil engineering	4	0	0	4	4		
				B. PRACTICAL							
6	ENGG	Major	CE591	Soil Mechanics Lab-II	0	0	3	3	1.5		
7	ENGG	Major	CE592	Highway and Transportation Engineering Lab	0	0	3	3	1.5		
8	ENGG	Major	CE593	Environmental Engineering Lab	0	0	3	3	1.5		
9	PROJECT	Minor	PR591	Minor Project-I	0	0	2	2	1		
	Т		27	21.5							

^{*&#}x27;Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines.

	3 rd Year6 th Semester										
Sl.	Broad Category	Category	Course Code	Course]	Hour	s pe	r week	Credits		
No.	category	dategory	Couc	Title	L	T	P	Total			
				A. THEORY							
1	ENGG	Major	CE601	Structural Design-II	3	0	0	3	3		
2	ENGG	Major	CE602	Construction Planning and Management	3	0	0	3	3		
3	ENGG	Major	CE603	Irrigation and Water Resource Engineering	4	0	0	4	4		
4	SCI	Minor	CE604	A. Operations Research B. Human Resource Management	4	0	0	4	4		
				C. Studies On Six Sigma B. PRACTICAL							
5	ENGG	Major	CE691	Structural Design and Detailing Lab	0	0	3	3	1.5		
6	ENGG	Major	CE692	Computer Aided Design and Drafting Lab	0	0	2	2	1.0		
7	ENGG	Internship	CE693	Industrial Training (Min 2 weeks)	0	0	2	2	1.0		
8	PROJECT	Minor	PR691	Minor Project-II	0	0	2	2	1.0		
	To		23	18.5							

^{*&#}x27;Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines.

			4 th	Year7 th Semester					
Sl.	Broad Category	Category	Course Code	Course Title	Н	ours	per w	veek	Credits
					L	T	P	Total	
				A. THEORY					
	ENGG	Major	CE701	Advanced Transportation Engineering	3	1	0	4	4
2	ENGG	Major	CE702	Advanced Structural Analysis Advanced Foundation Engineering Pavement Design	3	0	0	3	3
3	ENGG	Major	CE703	A. Water and Wastewater Engineering B. Hydraulic Structure C. Water Pollution and its Control	3	0	0	3	3
4	SCI	Minor	CE704	A. Human Resource Development and Organizational Behavior B. History of Science & Engineering C. Finite Element Method	3	0	0	3	3
5	НИМ	Minor	HU(CE)705	Economics for Engineers	3	0	0	3	3
	I		ı	B. PRACTICAL					
<u> </u>	PROJECT	Major	PR781	Major Project-I	0	0	8	8	4
	ENGG	Major	CE782	Internship (Min 1 month)	0	0	2	2	1.0
	HUM	Ability Enhanceme nt Course	HU(CE)791	Technical Seminar Presentation	0	0	1	1	0.5
9	ENGG	Skill enhanceme nt Course	HU(CE)792	Skill Development : Technical article writing	0	0	1	1	0.5
	Tot	al of Theory	y, Practical and	d Mandatory Activities/Cou	rses			26	22

^{*&#}x27;Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines.

	4 th Year8 th Semester											
Sl.No.	Broad Category	Category	Course Code	Course Title	Н	ours	s per	week	Credits			
	dategory	Jan 18			L	T	P	Total				
	A. THEORY											
1	ENGG	Major	CE801	A. Structural Dynamics and Earthquake Engineering B. Public Transport System C. Ground Improvement Techniques	3	0	0	3	3			
2	ENGG	Major	CE802	A. Bridge Engineering B. Pre-stressed Concrete C. Air & Noise Pollution and Control	3	0	0	3	3			
3	ENGG	Minor	CE803	A. Project Management B. Cyber Law and Ethics	3	0	0	3	3			
4	HUM	Ability Enhancement Course	HU(CE)801	Principles of Management	2	0	0	2	2			
				C. PRACTICAL								
5	PROJECT	Major	PR881	Major Project-II	0	0	12	12	6			
6	ENGG	Major	CE882	Grand Viva	0	0	2	2	1			
	Total of Theory, Practical and Mandatory Activities/Courses								18			

^{*&#}x27;Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines.

Total Credit:

Semester	Without MOOCS
1st	22
2nd	18
3rd	22
4th	20
5th	21.5
6th	18.5
7th	22
8th	18
TOTAL	162

Credit Distribution

Category	1st Semester	2nd Semester	3rd Semester	4th Semester	5th Semester	6th Semester	Total Credit to obtain UG Degree (Category Wise)	Credit Allocatio n as per NEP to obtain UG Degree	7th Semester	8th Semester	Total Credit (Catego ry Wise)	Credit Allocatio n as per NEP
Major (Core)	4.5	4.5	14	14	16.5	12.5	66	60	15	13	94	80
Minor Stream	4.5	-	6	4.5	5	5	25	24	6	3	34	32
Multidisciplinary	6	5	-	-	-	-	11	9	-	-	11	9
Ability Enhancement Courses (AEC)	1	3	0.5	0.5	-	-	5	8	0.5	2	7.5	8
Skill Enhancement Courses (SEC)	3	2.5	1.5	-	1	1	7	9	0.5	-	7.5	9
Value Added Courses common for all UG	3	3	-	-	-	-	6	6 to 8	-	-	6	6 to 8
Internship	-	-	-	1	•	1	2	2 to 4	-	-	2	2 to 4
Research Project	-	-	-		-	ı	•	-	-	-	-	12
Total Credit (Semester Wise)	22	18	22	20	21.5	18.5	122	120	22	18	162	160

<u>Distribution of Subjects under Different Categories</u>

Major Courses

SL NO.	Name of the Subject	Subject Code	Semester	L:T:P	Credit
1	Introduction to Civil Engineering	CE101	1st	3:0:0	3
2	Engineering Graphics & Design Lab	CE191	1st	0:0:3	1.5
3	Engineering Mechanics	CE201	2nd	3:0:0	3
4	Auto cad Lad	CE291	2nd	0:0:3	1.5
5	Surveying	CE301	3rd	3:0:0	3
6	Building Materials and Construction	CE302	3rd	2:0:0	2
7	Strength of Materials	CE303	3rd	3:0:0	3
8	Engineering Geology	CE304	3rd	2:0:0	2
9	Surveying Lab	CE391	3rd	0:0:3	1.5
10	Engineering Geology Lab	CE392	3rd	0:0:3	1.5
11	Building Planning and drawing Lab	CE393	3rd	0:0:2	1
12	Concrete Technology	CE401	4th	3:0:0	3
13	Structural Analysis	CE402	4th	4:0:0	4
14	Soil Mechanics	CE403	4th	3:0:0	3
15	Concrete Technology Lab	CE491	4th	0:0:3	1.5
16	Soil Mechanics Lab-I	CE492	4th	0:0:3	1.5
17	Quantity Surveying, Specifications and Valuation	CE493	4th	0:0:2	1
18	Structural Design-I	CE501	5th	3:0:0	3
19	Foundation Engineering	CE502	5th	3:0:0	3
20	Highway and Transportation Engineering	CE503	5th	3:0:0	3
21	Environmental Engineering	CE504	5th	3:0:0	3
22	Soil Mechanics Lab-II	CE591	5th	0:0:3	1.5
23	Highway and Transportation Engineering Lab	CE592	5th	0:0:3	1.5
24	Environmental Engineering Lab	CE593	5th	0:0:3	1.5
25	Structural Design-II	CE601	6th	3:0:0	3
26	Construction Planning and Management	CE602	6th	3:0:0	3
27	Irrigation and Water Resource Engineering	CE603	6th	4:0:0	4
28	Structural Design and Detailing Lab	CE691	6th	0:0:3	1.5
29	Computer Aided Design and Drafting Lab	CE692	6th	0:0:2	1
	Total for Major Courses u	•	•		66
30	Advanced Transportation Engineering	CE701	7th	3:1:0	4
31	A. Advanced Structural Analysis		7th		
32	B. Advanced Foundation Engineering	CE702	7th	3:0:0	3
33	C. Pavement Design		7th		
34	A. Water and Wastewater Engineering		7th		
35	B. Hydraulic Structure	CE703	7th	3:0:0	3
36	C. Water Pollution and its Control		7th		
37	Major Project-I	PR781	7th	0:0:8	4
38	Internship (Min 1 month)	CE782	7th	0:0:2	1
39	A. Structural Dynamics and Earthquake Engineering		8th		
40	B. Public Transport System	CE801	8th	3:0:0	3

R23-BTech-CE

41	C. Ground Improvement Techniques		8th						
42	A. Bridge Engineering		8th						
43	B. Pre-stressed Concrete	CE802	8th	3:0:0	3				
44	C. Air & Noise Pollution and Control		8th						
45	Major Project-II	PR881	8th	0:0:12	6				
46	Grand Viva	CE882	8th	0:0:2	1				
	Total for Major Courses up to 4th Year								

Minor Courses

SL NO.	Name of the Subject	Subject Code	Semester	L:T:P	Credit
1	Basic Electric Engineering	EE(CE)101	1st	3:0:0	3
2	Basic Electrical Engineering Lab	EE(CE)191	1st	0:0:3	1.5
3	Computer Fundaments and programming	CS(CE)301	3rd	3:0:0	3
4	Composite Materials	CE305	3rd	3:0:0	3
5	Numerical Methods	M(CE)401	4th	3:0:0	3
6	Numerical Methods Lab	CS(CE)491	4th	0:0:3	1.5
7	A. Instrumentation & Sensor Technologies for Civil Engineering Applications	CETOF	Tab.	4.0.0	4
7	B. Surveying & Geometrics	CE505	5th	4:0:0	4
	C. Application of IOT in civil engineering				
8	Minor Project-I	PR591	5th	0:0:1	1
	A. Operations Research				
9	B. Human Resource Management	CE604		4:0:0	4
	C. Studies On Six Sigma		6th		
10	Minor Project-II	PR691	6th	0:0:1	1
	Total for Minor Courses up	to 3rd Year			25
11	A. Human Resource Development and Organizational Behavior	CD704	7.1		2
11	B. History of Science & Engineering	CE704	7th		3
	C. Finite Element Method			3: 0:0	
12	Economics for Engineers	HU(CE)705	7th	3:0:0	3
13	A. Project Management	CE803	8th		3
13	B. Cyber Law and Ethics	CEOUS	oui	3:0:0	3
	Total for Minor Courses up	to 4th Year			34

Multidisciplinary Courses

SL NO.	Name of the Subject	Subject Code	Semester	L:T:P	Credit
1	Engineering Physics	PH(CE)101	1st	3:0:0	3
2	Engineering Mathematics-I	M(CE)101	1st	3:0:0	3
3	Engineering Chemistry	CH(CE)201	2nd	2:0:0	2
4	Engineering Mathematics -II	M(CE)201	2nd	3:0:0	3
	Total for Multidisciplinary Courses	up to 3rd	Year/4th Y	ear	11

Ability Enhancement Courses

SL	Name of the Subject	Subject	Semester	L:T:P	Credit
NO.		Code			
1	Competencies in Social Skills	HU(CE)192	1st	0:0:2	1
2	Professional Communication	HU(CE)201	2nd	2:0:0	2
3	Professional Communication Lab	HU(CE)292	2nd	0:0:2	1
4	Life skill	HU(CE)391	3rd	0:0:1	0.5
5	Quantitative Aptitude: Numerical & Logical reasoning	HU(CE)491	4th	1:0:0	0.5
	Total for Ability Enhancement C	ourses up	to 3rd Yeai	r	5
6	Technical Seminar Presentation	HU(CE)791	7th	0:0:1	0.5
7	Principles of Management	HU(CE)801	8th	2:0:0	2
	Total for Ability Enhancement C	ourses up	to 4th Yeaı	ľ	7.5

Skill Enhancement Courses

SL	Name of the Subject	Subject Code	Semester	L:T:P	Credit
NO.					
1	Engineering Physics Lab	PH(CE)191	1st	0:0:3	1.5
2	Technical report writing and language lab	HU(CE)191	1st	0:0:3	1.5
3	Engineering Chemistry Lab	CH(CE)291	2nd	0:0:2	1
4	Workshop & Manufacturing Practices Lab	ME(CE)291	2nd	0:0:3	1.5
5	Computer Fundaments and programming Lab	CS(CE)391	3rd	0:0:3	1.5
	Total for Skill Enhancement (Courses up to	3rd Year		7
6	Skill Development : Technical article writing	HU(CE)792	7th	0:0:1	0.5
	Total for Skill Enhancement	Course up to	4th Year		7.5

Value Added Courses

SL NO.	Name of the Subject	Subject Code	Semester	L:T:P	Credit
1	Environmental science	HU(CE)101	1st	2:0:0	2
2	Indian Knowledge System	HU(CE)102	1st	1:0:0	1
3	Values and Ethics	HU(CE)202	2nd	2:0:0	2
4	Constitution of India	HU(CE)203	2nd	1:0:0	1
	Total for Value Added Courses u	p to 3rd Ye	ar/4th Yea	r	6

<u>Internship</u>

SL NO.	Name of the Subject	Subject Code	Semester	L:T:P	Credit	
1	Industrial Training (min 1 weeks)	CE494	4th	0:0:2	1	
2	Industrial Training (Min 2 weeks)	CE693	6th	0:0:2	1	
Total for Internship up to 3rd Year/4th Year						

Department: Civil Engineering Curriculum Structure & Syllabus for BTechin Civil Enginee

ring (Effectivefrom2023-24admissionbatch)

	1stYear 1stSemester								
Sl.No.	Broad Category	Category	Course Code	Course Title		Hou wee T	k Î	er Total	Credits
			A.THEORY						
1	ENGG	Major	CE101	Introduction to Civil Engineering	3	0	0	3	3
2	ENGG	Minor	EE(CE)101	Basic Electrical & Electronics Engineering	3	0	0	3	3
3	SCI	Multidisciplinary	PH(CE)101	Engineering Physics	3	0	0	3	3
4	SCI	Multidisciplinary	M(CE)101	Engineering Mathematics-I	3	0	0	3	3
5	HUM	Value added course	HU104	Environmental science	2	0	0	2	2
6	HUM	Value added course HU105 Indian Knowledge System		1	0	0	1	1	
			B.PRACTI	CAL					
1	ENGG	Major	CE191	Engineering Graphics & Design Lab	0	0	3	3	1.5
2	ENGG	Minor	EE(CE)191	Basic Electrical & Electronics Engineering Lab	0	0	3	3	1.5
3	HUM	Ability Enhancement Course	HU(CE)191	Competencies in Social Skills	0	0	2	2	1
4	SCI	Skill Enhancement Course	PH(CE)191	Engineering Physics Lab	0	0	3	3	1.5
5	ENGG	Skill enhancement course	HU(CE)192	Technical report writing and language lab	0	0	3	3	1.5
Tota	lof Theory	andPracticalCourses	` `					29	22

^{*&#}x27;Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines

COURSE NAME: INTRODUCTION TO CIVIL ENGINEERING

COURSE CODE:CE101

CONTACT: 3:0:0

TOTAL CONTACT HOURS: 36

CREDITS:3

Prerequisites: Abasicknowledgein10+2Science subjects.

CourseObjective:

The concepts developed in this course will aid in quantification of several concepts in Civil

Engineeringbasedonpreviousknowledgescienceatthe 10+2 levels inschools. Technology is being increasingly based on the basics of Civil Engineering, broad area of Civil Engineering and their application.

CourseOutcomes(COs):

Aftercompletion of this course students will be able to:

CO1: Describe the fundamentals of Civil Engineering and their broad areas.

CO2:ApplyfundamentalconceptsofCivilEngineering indifferentengineeringapplications.

CO3:Apply the knowledge of various specializations and concept of Civil Engineering to differentindustries.

CO4: Evaluate theoretical and practical aspects related to the various aspects of Civil Engineering

inStructuralEngineering,SoilEngineering,TransportationEngineering,Water Resource Engineering,EnvironmentalEngineering,etc.totheindustrial scale,inaccordancewithcurrent needs.

COURSE CONTENT -

Module 1: Introduction and Scope of Civil Engineering:2L

Function of Civil Engineering, Broad disciplines of Civil Engineering; Impact of Infrastructural Development on the Economy of a Country; Importance of Civil Engineering; Possible scopes for a career in Civil Engineering

Module 2: History and Fundamentals of Civil Engineering – 4L

Relevance of Civil Engineering in the overall infrastructural development of the country. Types and classification of structures - buildings, towers, chimneys, bridges, dams, retaining walls, walter tanks, silos, roads, railways, runways and pipelines (Brief description only)- Definition and types of buildings as per National Building Code of India (brief description only) - Selection of site - Components of a building and their functions – Setting out of a building.

Module 3: Introduction to building Materials: 4L

Cement: Basic Ingredients — Manufacturing process - Grades – Properties - Uses, Aggregates: Fine and coarse aggregate - Properties – Uses; Brick Masonry: Types - Bond - Introduction to all types of bonds: Introduction to stones masonry, Timber:

Properties - Uses - Classification - Seasoning - Defects - Preservation; Hard board and Particle board - Manufacture and use; Steel: Structural steel and steel as reinforcement - Types - Properties - Uses - Market forms; Floors and Flooring materials: Different types and selection of floors and floor coverings; Roofs and roof coverings: Different types of roofs - Suitability - Types and selection of roofing materials.

Module 4: Elements of Building Construction & Planning:4L

General Requirement of Building, Elementary principles and basic requirements of a building Planning, Importance of Planning, Layout of residential & industrial buildings, Introduction to Plan, Elevation & Section of Residential Building Construction: Classification of buildings based upon occupancy, Types of Structures, Design Loads acting on the structure, Elements of building drawing.

Module 5: Fundamentals of Surveying: 31.

Introduction, Basic Definitions (Surveying, levelling, Plans, Maps, Scales), Introduction to divisions of surveying, Classification of surveying, Fundamental principles of surveying, Measurement in Surveying, Phases of Surveying.

Module 6: Fundamentals of Structural Engineering: 4L

Objective of Structural Engineering, Types of Loads on Structure, Types of structure, Structural idealization, Load paths in structures, Characteristics of force system, Moments and Reactions, Types of Structural Members, Column and Footing, Types of beams, Types of slabs, Fundamentals of support and reactions

Module 7: Fundamentals of Geotechnical Engineering: 4L

Introduction to Geotechnical Engineering, Nature of Soil and rock materials, Approach to study Geotechnical Engineering, Soil formation and nature of soil Constituents, Introduction and classification properties of soils, Basic definitions and Phase relations

Module 8: Introduction to Transportation Engineering: 4L

Role of Transportation in National development, Transportation Ways and mode of transport, Surface Transportation and Aviation, Introduction to Railway Engineering, Elements of Traffic Engineering and Traffic Control.

Module 9: Environmental Engineering & Sustainability: 4L

Sustainability Concepts – Innovations and Challenges; Environmental Measurements from Different Disciplines; Water – Quantity and Quality; Water Treatment Basics; Basics of Wastewater Collection, Treatment & Resource Recovery; Basics of Solid Waste, Soil and Noise Pollution; Basics of Air Pollution Issues – Global and Local

Module 10: Fundamentals of Water Resources Development: 3L

Elementary Hydrology, Sources of water, Watershed Development, Water requirements and its conservation, Basic Introduction of Hydraulic Structures of Storage.

Reference Books-

- 1) Chen, W. F. and Liew, J. Y. R., (Eds.), The Civil Engineering Handbook, Second Edition, CRC Press (Taylor and Francis)
- 2) Dalal, K. R., Essentials of Civil Engineering, Charotar Publishing House
- 3) Gopi, S., Basic Civil Engineering, Pearson Publishers
- 4) Kandya, A. A., Elements of Civil Engineering, Charotar Publishing house
- 5) Mamlouk, M. S. and Zaniewski, J. P., Materials for Civil and Construction Engineering, Pearson Publishers.
- 6) McKay, W. B. and McKay, J. K., Building Construction Volumes | to 4, Pearson India Education Services

- 7) Rangwala, S. C. and Dalal, K. B., Engineering Materials, Charotar
- Publishing house
 8) Rangwala, S. C. and Dalal, K. B., Building Construction, Charotar Publishing house

	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO 10	PO 11	PO 12
CO1	3	3	2	1	-	-	-	-	-	-	2	2
CO2	3	3	2	1	-	-	-	-	-	-	2	2
CO3	3	2	2	1	-	-	-	-	_	-	1	2
CO4	2	3	2	1	-	-	-	-	-	-	2	1

PAPER NAME: ENGINEERING PHYSICS

PAPERCODE: PH(CE)101

CONTACT:3:0:0

TOTAL CONTACT HOURS: 36 CREDIT:3

Prerequisites: KnowledgeofPhysics up to12thstandard.

Course Objectives:

The aim of course is to provide adequate exposure and develop insight about the basic principles of physical sciences and its practical aspects which would help engineers to learn underlying principles of various tools and techniques they use in core engineering and related industrial applications. The course would also inculcate innovative mindsets of the students and can create awareness of the vital role played by science and engineering in the development of new technologies.

Course Outcomes (COs):

After attending the course students should be able to

COs	Description
CO1	Explain basic principles of laser, optical fiber and holography.
CO2	Understand the properties of Nano material and semiconductor.
CO3	Understand standard measurement methods that are used in building acoustics.
CO4	Analyze different crystallographic structures according to their co- ordination number and packing factors.
CO5	Justify the need of a quantum mechanics as remedy to overcome
	limitations imposed by classical physics.

Course Content:

Module 1 (12L) Modern Optics

1.01- Laser: Concepts of various emission and absorption processes, Einstein A and B coefficients and

equations, working principle of laser, metastable state, population inversion, condition necessary for active laser action, optical resonator, illustrations of Ruby laser, He-Ne laser, Semiconductor laser, applications of laser, related numerical problems.

6L

1.02-Fibre optics-Principle and propagation of light in optical fibers (Step index, Graded index, single and multiple modes) - Numerical aperture and Acceptance angle, Basic concept of losses in optical fiber, related numerical problems.

1.03-Holography-Theory of holography, viewing of holography, applications 3L

Module 2 (6L)

Solid State Physics

2.01 Crystal Structure: Structure of solids, amorphous and crystalline solids (definition and examples), lattice, basis, unit cell, Fundamental types of lattices – Bravais lattice, simple cubic, fcc and bcc lattices, Miller indices and miller planes, co-ordination number and atomic packing factor, Bragg's equation, applications, numerical problems.

2.02 Semiconductor: Physics of semiconductors, electrons and holes, metal, insulator and semiconductor, intrinsic and extrinsic semiconductor, p-n junction. 3L

Module 3 (8L)

Quantum Mechanics

3.01 Quantum Theory: Inadequacy of classical physics-concept of quantization of energy, particle concept of electromagnetic wave (example: photoelectric and Compton Effect; no derivation required, origin of modified and unmodified lines), wave particle duality; phase velocity and group velocity; de Broglie hypothesis; Davisson and Germer experiment, related numerical problems. 4L

3.02 Quantum Mechanics 1: Concept of wave function, physical significance of wave function, probability interpretation; normalization of wave functions-Qualitative discussion; uncertainty principle, relevant numerical problems, Introduction of Schrödinger wave equation (only statement).

4L

Module 4 (4L)

Physics of Nanomaterials

Reduction of dimensionality, properties of nanomaterials, Quantum wells (two dimensional), Quantum wires (one dimensional), Quantum dots (zero dimensional); Quantum size effect and Quantum confinement. Carbon allotropes. Application of nanomaterials (CNT, graphene, electronic, environment, medical).

Module 5 (6L)

Building Acoustics, Ultrasound and infrasound

5.01: Building Acoustics: Introduction, bel, decibel-their physical significance, Reverberation, reverberation time, Sabine's formula (statement only), remedies over reverberation; Absorption of sound, absorbent materials; Conditions for good acoustics of a building; Noise, its effects and remedies.

2L

5.02: Ultrasound-Introduction, definition and properties —Production of ultrasonics by Piezo-electric crystal and magnetostriction method; Detection of ultrasonics; Engineering applications of Ultrasonics (Non-destructive testing, cavitations, measurement of gauge). Infrasound — Introduction and definition, production, application: Seismography (concept only).

Recommended Text Books for Physics I:

Text Books:

- 1. Refresher courses in physics (Vol. 1, Vol. 2 & Vol. 3)-C. L. Arora (S. Chand Publishers)
- 2. Engineering Physics (Vol. 1, Vol. 2)-S.P. Kuila (S. Chand Publishers).
- 3. Perspective & Concept of Modern Physics -Arthur Baiser (Publisher: MaGrawhill)

- 4. Principles of engineering physics Md. N Khan and S Panigrahi (Cambridge University Press).
- 5. Concepts of Modern Engineering Physics-A. S. Vasudeva. (S. Chand Publishers)
- 6. Engineering Physics (Vol. 1, Vol. 2)-S.P. Kuila (S. Chand Publishers).
- 7. Physics Volume 1&2 Haliday, Resnick & Krane, Publisher: Wiley India).
- 8. Engineering Physics-B. K. Pandey And S. Chaturvedi (Publisher: Cengage Learning, New Delhi).

Recommended Reference Books for Physics I:

Modern Optics:

- 1. A text book of Light-Brijlal & Subhramanium, (S. Chand publishers).
- 2. Optics-Ajay Ghatak (TMH)

Solid State Physics:

- 1. Solid state physics- S. O. Pillai.
- 2. Introduction to solid state physics-Kittel (TMH).

Quantum Mechanics:

- 1. Introduction to Quantum Mechanics-S. N. Ghoshal (Calcutta Book House).
- 2. Quantum mechanics -A.K. Ghatak and S Lokenathan

Physics of Nanomaterials

- 1. Introduction to Nanotechnology, B.K. Parthasarathy.
- 2. Introduction to Nanoscience and Nanotechnology, An Indian Adaptation-Charles P. Poole, Jr., Frank J. Owens.

Ultrasound and Infrasound

- 1. Principles of Accoustics -B. Ghosh (Sreedhar Publishers)
- 2. A Treatise on Oscillations, Waves and Acoustics-D. Chattopadhyay.

CO-PO Mapping:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2								2
CO2	3	3	2	2								2
CO3	3	3	2	2								2
CO4	3	2	2	2								1
CO5	3	3	3	2	2							1

COURSE NAME: ENGINEERING MATHEMATICS-I

COURSECODE: M(CE)101

CONTACT:3:0:0

TOTAL CONTACT HOURS:

36CREDITS:3

Prerequisite: The students to whom this course will be offered must have the concept of (10+2) algebra and calculus.

Course objectives: KnowledgeofMathematics up to 12th standard.

Course Outcomes (COs):

On successful completion of the learning sessions of the course, the learner will be able to

CO1: Recall the properties and formula related to Matrix Algebra, Differential Calculus and Laplace Transforms

CO2: Determine the solutions of the problems related to Matrix Algebra, Differential Calculus and Laplace Transforms

CO3: Apply the appropriate mathematical tools of Matrix Algebra, Matrix Algebra, Differential Calculus and Laplace Transforms

CO4: Analyze different engineering problems linked with Matrix Algebra, Matrix Algebra, Differential Calculus and Laplace Transforms

Course Content:

Module-I: Matrix Algebra (10)

Echelon form and Normal (Canonical) form of a matrix; Inverse and rank of a matrix; Consistency and inconsistency of system of linear equations, Solution of system of linear equations; Eigenvalues and eigenvectors, Cayley-Hamilton theorem.

Module II: Differential Calculus (12)

Function of several variables, Concept of limit, continuity and differentiability; Partial derivatives, Total derivative and its application; Chain rules, Derivatives of implicit functions Euler's theorem on homogeneous function, Jacobian. Maxima and minima of functions of two variables

Module III: Laplace Transform (LT): (14 Lectures)

Improper integrals; Beta and Gamma functions and their properties. Definition and existence of LT, LT of elementary functions, First and second shifting properties, Change of scale property, LT of tf(t), LT of tf(t), LT of

derivatives of f(t), LT of integral of f(t), Evaluation of improper integrals using LT, LT of periodic and step functions, Inverse LT: Definition and its properties, Convolution theorem (statement only) and its application to the evaluation of inverse LT, Solution of linear ODE with constant coefficients (initial value problem) using LT.

Text Books:

- 1. Kreyszig, E., Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006
- 2. Ramana, B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 3. Veerarajan, T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 4. Grewal, B.S., Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 5. Bali, N.P. and Goyal, M., A text book of Engineering Mathematics, Laxmi Publications, Reprint,
- 6. Samanta Guruprasad, A text book of Engineering Mathematics-I, New age International Publishers
- 7. Samanta Guruprasad, A text book of Engineering Mathematics-II, New age International Publishers

Reference Books:

- 1. Bronson, R., Schaum's Outline of Matrix Operations. 1988.
- 2. Piskunov, N., Differential and Integral Calculus, Vol. I & Vol. II, Mir Publishers, 1969
- 3. Poole, D., Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

CO-PO Mapping:

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO												
CO1	3	2	-	-	-	-	-	-	-	-	-	2
CO2	3	2	-	-	-	-	-	-	-	-	-	2
CO3	3	2	2	-	-	-	-	-	-	-	-	2

COURSENAME:BASICELECTRICALENGINEERING

COURSECODE: EE(CE)101

CONTACT:3:0:0

TOTAL

CONTACT

HOURS: 36

CREDITS:3

PREREQUISITES: Analysis, Knowledge of calculus, statistics, differential equations, Fourier transformation, basics of mechanics and electrodynamics.

COURSEOBJECTIVE:

To impart basic knowledge of electrical quantities and provide working knowledge for the analysis of DC and AC circuit.

To understand the construction and working principle of DC and AC machine

To facilitate understanding of basic electronics and operational amplifier circuits

COURSEOUTCOMES(COS):

.CO	Statement
CO1	Apply fundamental concepts and circuit laws to solve simple DC electric circuits
CO2	To solve simple ac circuits in steady state
CO3	Impart the knowledge of Basic Electronics Devices and ICs.
.CO4	Analyze the simple electronics circuits

MODULE 1: Elementary Concepts of Electric Circuits

6L

DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor – Ohm's Law - Kirchhoff's Laws –Independent and Dependent Sources – Simple problems- Nodal Analysis, Mesh analysis with independent sources only (Steady state)

Introduction to AC Circuits and Parameters: Waveforms, Average value, RMS Value, Instantaneous power, real power, reactive power and apparent power, power factor — Steady state analysis of RLC circuits (Simple problems only)

MODULE 2: Electrical machine

8L

Transformer: Magnetic materials, BH characteristics, ideal and practical

transformer, equivalent circuit, losses in transformers, regulation and efficiency.

DC Machines: Brief idea on constructional features, classifications, working principle of both motor and generator. Simple problems on Voltage equation.

MODULE 3: Fundamentals of Semiconductor Devices:

6L

Introduction to Semiconductor: Concept of energy band diagram; Comparison among metal, insulator, semiconductor; Semiconductors-classifications and Fermi energy level; Charge neutrality and Mass-Action law in semiconductor; Current flow in semiconductor due to drift & diffusion process: Einstein relation.

MODULE 4: PN Junction Diode:

4L

Principle of operation; V-I characteristics; principle of avalanche & Zener breakdown; Junction resistances and capacitances; V-I characteristics of Zener diode.

MODULE 5: Bipolar Junction Transistors:

4L

PNP and NPN structures; Principle of operation; Current gains in CE, CB and CC mode; input and output characteristics; Biasing & Stability Analysis-Concept of Fixed Bias, Collector to base Bias & voltage divider bias.

MODULE 6: Introduction to IC:

8L

Integrated circuit-Basic idea, classifications, advantages, disadvantages; OPAMP(IC741)-Pin configuration and equivalent circuit; Characteristics of OPAMP(IC741); Inverting & Non-Inverting Amplifier; Adder, Subtractor, Differentiator & Integrator Circuit.

Textbooks:

- 1. A Textbook of Electrical Technology Volume I (Basic Electrical Engineering) & Volume II (Ac & DC Machines)-B. L Theraja & A.K. Teraja, S. Chad,23rd Edition,1959
- 2. D. Chattopadhyay, P.C Rakshit, "Electronics Fundamentals and Applications", New Age International (P) Limited Publishers, Senenth Edition, 2006
- 3. Basic Electrical & Electronics Engineering by J.B. Gupta ,S.K. Kataria & Sons,2013
- 4. Basic Electrical and Electronics Engineering-I by Abhijit Chakrabarti and Sudip Debnath, McGraw Hill, 2015
- 5. M.S.Sukhija and T.K.Nagsarkar, Basic Electrical and Electronics Engineering, Oxford University Press, 2012.
- 6. DP Kothari and IJ Nagrath, "Basic Electrical & Electronics

Engineering", Tata McGraw Hill,2020.

Reference Books

- 1. DC Kulshreshtha, "Basic Electrical Engineering", TataMcGrawHill, 2010.
- 2. T.K. Nagsarkar, M.S.Sukhija, "Basic Electrical Engineering", Oxford Higher Education.
- 3. Hughes, "Electrical and Electronic Technology", Pearson Education".
- 4. Parker and Smith, "Problems in Electrical Engineering", CBS Publishers and Distributors.
- 5. Anant Agarwal, Jeffrey Lang, Foundations of Analog and Digital Electronic Circuits, Morgan Kaufmann Publishers, 2005.
- 6. Bernard Grob, Basic Electronics, McGrawHill.
- 7. Chinmoy Saha, Arindham Halder and Debarati Ganguly, Basic Electronics-Principles and Applications, Cambridge University Press, 2018.

CO-PO Course Articulation Matrix Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO 10	PO 11	PO 12
CO1	3	3	2	1	_	-	-	-	-	-	2	2
CO ₂	3	3	2	1	-	-	-	-	-	-	2	2
CO ₃	3	2	2	1	_	-	-	-	-	-	1	2
CO4	2	3	2	1	-	-	-	-	-	-	2	1

COURSENAME: ENVIRONMENTAL SCIENCE

COURSECODE:HU(CE)101

CONTACT:2:0:0

CONTACT HOURS: 24

CREDIT: 2

Pre-requisites: NIL

Course Objective(s): This course will enable the students to,

- Realize the importance of environment and its resources.
- Apply the fundamental knowledge of science and engineering to assess environmental and health risk.
- Know about environmental laws and regulations to develop guidelines and procedures for health and safety issues.
- Solve scientific problem-solving related to air, water, land and noise pollution.

Course Outcomes (COs):

CO	Statement
C01	Able to understand the natural environment and its relationships with human activities
C02	The ability to apply the fundamental knowledge of science and engineering to assess environmental and health risk
C03	Ability to understand environmental laws and regulations to develop guidelines and procedures for health and safety issues
CO4	Acquire skills for scientific problem-solving related to air, water, noise & land pollution.

Module 1 - Resources and Ecosystem (6L)

1. Resources (2L)

Types of resources, resistance to resources, Human resource, Population Growth models: Exponential Growth, logistic growth

2. Ecosystem (3L)

Components of ecosystem, types of ecosystems, Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Food chain, Food web.

3. Energy and Environment(1L)

Conventional energy sources, coal and petroleum, Green energy sources, solar energy, tidal energy, geothermal energy, biomass

Module 2 – Environmental Degradation (9L)

1. Air Pollution and its impact on Environment (3L)

Air Pollutants, primary & secondary pollutants, Criteria pollutants, Smog, Photochemical smog and London smog, Greenhouse effect, Global Warming, Acid rain, Ozone Layer Depletion.

2. Water Pollution and its impact on Environment (3L)

Water Pollutants, Oxygen demanding wastes, heavy metals, BOD, COD, Eutrophication, Hardness, Alkalinity, TDS and Chloride, Heavy metal poisoning and toxicity.

3. Land Pollution and its impact on Environment (2L)

Solid wastes, types of Solid Waste, Municipal Solid wastes, hazardous wastes, biomedical wastes, E-wastes

4. Noise Pollution and its impact on Environment (1L)

Types of noise, Noise frequency, Noise pressure, Noise intensity, Noise Threshold limit, Effect of noise pollution on human health.

Module 3 – Environmental Management (6L)

1. Environmental Impact Assessment (1L)

Objectives of Environmental management, Components of Environmental Management, Environmental Auditing, Environmental laws and Protection Acts of India

2. Pollution Control and Treatment (2L)

Air Pollution controlling devices, Catalytic Converter, Electrostatic Precipitator, etc., Waste Water Treatment, Noise pollution control.

3. Waste Management (3L)

Solid waste management, Open dumping, Land filling, incineration, composting, E-waste management, Biomedical Waste management.

Module 4 – Disaster Management (3L)

1. Study of some important disasters (2L)

Natural and Man-made disasters, earthquakes, floods drought, landside, cyclones, volcanic eruptions, tsunami, Global climate change. Terrorism, gas and radiations leaks, toxic waste disposal, oil spills, forest fires.

2. Disaster management Techniques (1L)

Basic principles of disasters management, Disaster Management cycle, Disaster

management policy, Awareness generation program

Text Books:

- 1. Basic Environmental Engineering and Elementary Biology (For MAKAUT), Gourkrishna Dasmohapatra, Vikas Publishing.
- 2. Basic Environmental Engineering and Elementary Biology, Dr. Monindra Nath Patra & Rahul Kumar Singha, Aryan Publishing House.
- 3. Textbook of Environmental Studies for Undergraduate Courses, Erach Barucha for UGC, Universities Press

Reference Books:

- 1. A Text Book of Environmental Studies, Dr. D.K. Asthana & Dr. Meera Asthana, S. Chand Publications.
- 2. Environmental Science (As per NEP 2020), Subrat Roy, Khanna Publisher.

CO - PO Mapping

CO	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	Able to understand the natural environment and its relationships with human activities	2	2	3	-	-	2	3	3	-	-	1	2
2	The ability to apply the fundamental knowledge of science and engineering to assess environmental and health risk		3	3	1	1	2	3	3	-	-	1	2
3	Ability to understand environmental laws and regulations to develop guidelines and procedures for health and safety issues	3	3	3	2	1	2	3	3	-	-	1	2
4	Acquire skills for scientific problem-solving related to air, water, noise & land pollution.	1	1	1	1	2	2	3	3	_	_	1	2
AVERA	GE	2	2	2	1	1	2	3	3	-	-	1	2

COURSE NAME: INDIAN KNOWLEDGE SYSTEM

CODE: HU(**CE**)102 **CONTACT:**1:0:0

TOTAL CONTACT HOURS: 12

CREDITS:1

Pre-requisites:10+2

Course Objective(s)

To holistic development of physical, mental and spiritual wellbeing of one and all, at the level of individual, society, nation and ultimately the whole world.

Course Outcomes (COs):

CO1: To recall & state thought process of social setting in ancient India to identify the roots and details of some contemporary issues faced by Indians

CO 2: The students are able to identify & inspect the importance of our surroundings& culture to design & formulate sustainable developmental solutions

CO 3: To develop the ability to understanding the issues related to 'Indian' culture, tradition and its composite character to apply the same in the socio-technological developments in present scenario

C0 4: The students are able to relate & assess Indian Knowledge System in the health care, architecture, agriculture & other systems .

Course Content -

Module-1 3L

An overview of Indian Knowledge System (IKS): Importance of Ancient Knowledge - Definition of IKS - Classification framework of IKS - Unique aspects of IKS.

The Vedic corpus: Vedas and Vedangas - Distinctive features of Vedic life. Indian philosophical systems: Different schools of philosophy.

Module-23L

Salient features of the Indian numeral system - Importance of decimal representation - The discovery of zero and its importance - Unique approaches to represent numbers.

Highlights of Indian Astronomy: Historical development of astronomy in India

Module-33L

Indian science and technology heritage - Metals and metalworking - Mining and ore extraction -Physical structures in India - Irrigation and water management - Dyes and painting technology - Surgical Techniques - Shipbuilding

Module-43L

Traditional Knowledge in Different Sectors: Traditional knowledge and engineering, Traditional medicine system, Traditional Knowledge in agriculture, Traditional societies depend on it for their food and healthcare needs.

References:

- 1) Introduction to Indian knowledge system: concepts and applications-Mahadevan B.Bhat, Vinayak Rajat, Nagendra Pavana R.N.,PHI
- 2) Traditional Knowledge system in India, Amit Jha, Atlantic Publishers
- 3) S. N. Sen and K. S. Shukla, *History of Astronomy in India*, Indian National Science Academy, 2nd edition, New Delhi, 2000

CO and PO mapping:

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO												
CO1	-	-	2	3	-	3	-	2	3	1	-	2
CO2	-	-	2	-	-	3	3	2	3	3	-	
CO3	-	-	2	-	-	3	3	1	3	1	-	2
CO4			2			3	3	2	3			

COURSENAME: ENGINEERING GRAPHICS & DESIGN LAB

COURSECODE: CE191

CONTACT:0:0:3 CREDITS:1.5

Prerequisites: Basicknowledgeofgeometry

CourseObjectives:

To acquainted students with the knowledge of various lines, geometrical constructions and construction of various kinds of scales, Ellipse, etc.

CourseOutcomes: Upon successful completion of this course, the student will be able to:

CO1: Learnthe basicsofdrafting

CO2:

Understandtheuseofdraftingtoolswhichdevelopsthefundamentalskillsofindustrialdrawing s.

CO3:

Applytheconceptofengineeringscales, dimensioning and various geometric curves necessary to understand design of machine elements.

CO4:

Analysetheconceptofprojectionofline, surface and solid stocreate the knowledge base of orthographic and isometric view of structures and machine parts.

CO5:

Evaluate the design model to different sections of industries as well as for research & development

Course Contents:

Basic EngineeringGraphics:

3P

Principles of EngineeringGraphics;Orthographic Projection; Descriptive Geometry; DrawingPrinciples; Isometric Projection; Surface Development; Perspective; Reading a Drawing; SectionalViews;Dimensioning&Tolerances;TrueLength,Angle;intersection,Shortest Distance.

Module1:IntroductiontoEngineeringDrawing

6P

Principles of Engineering Graphics and their significance, Usage of Drawing instruments, lettering, Conic sections including Rectangular Hyperbola (General methodonly); Cycloid, Epicycloid and Involute; Scales-Plain, Diagonal and Vernier Scales.

Module2:Orthographic&IsometricProjections

6P

Principles of Orthographic Projections-Conventions - Projections of Points and lines inclined toboth planes; Projections of planes on inclined Planes - Auxiliary Planes; Projection of Solidsinclined to both the Planes- Auxiliary Views; Isometric Scale, Isometric Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa.

Module3:SectionsandSectionalViewsofRightAngularSolids

6P

Drawing sectional views of solids for Prism, Cylinder, Pyramid, Cone and project the true shape ofthe sectioned surface, Auxiliary Views; Development of surfaces of Right Regular Solids -

Prism, Pyramid, Cylinder and Cone; Draw sectional orthographic views of objects from industry and dwellings (foundation to slabonly).

ComputerGraphics:

3P

EngineeringGraphicsSoftware;-

SpatialTransformations;OrthographicProjections;ModelViewing;Co-ordinateSystems;MultiviewProjection;ExplodedAssembly;ModelViewing;Animation;SpatialManipulation;SurfaceModeling;SolidModeling.

Module4:Overview of Computer Graphics

3P

DemonstrationofCADsoftware[TheMenuSystem,Toolbars(Standard,Properties,Draw,Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialogboxesandwindows,Shortcutmenus(ButtonBars), Zoomingmethods, Selectanderaseobjects].

Module5: CADDrawing, Customization, Annotations, layering

6P

Set up of drawing page including scale settings, ISO and ANSI standards for dimensioning andtolerance; Using various methods to drawstraight lines, circles, applying dimensions and annotation drawings; Setting up and use of Layers, changing line (extend/lengthen);Drawingsectionalviewsofsolids;Drawingannotation, CADmodelingof parts andnonparametric andassemblies with animation,Parametric solid, surface and wire frame modeling, Partediting and printing documents.

Module6:Demonstration of a simple team design project

3P

Illustrating Geometry and topology of engineered components: creation of engineering models andtheir presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; Meshedtopologies for engineering analysis and tool-path generation for component manufacture, use of solid-modelings of twareforcreating associative models at the component and assembly levels.

TextBooks:

- 1. BhattN.D., PanchalV.M.&IngleP.R, (2014), Engineering Drawing, Charotar Publishing House
- 2. K. Venugopal, Engineering Drawing+AutoCAD, New AgeInternational publishers

ReferenceBooks:

- 1. PradeepJain, Ankita Maheswari, A.P. Gautam, Engineering Graphics & Design, Khanna Publishing House
- 2. AgrawalB. & AgrawalC. M.(2012), Engineering Graphics, TMHPublication.
- 3. Shah, M.B. & RanaB.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education
- 4. Narayana, K.L.&PKannaiah (2008), Textbook on Engineering Drawing, Scitech Publishers.

CO-PO/PSOMapping:

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2			2									2	2	2
CO2	2			2									2	2	2
CO3	3			2									2	2	2
CO4	3			3									3	3	2
CO5	3	2		3	2								3	3	2

COURSE NAME: ENGINEERING PHYSICS LAB

COURSECODE: PH(CE)191

CONTACT:0:0:3

TOTAL CONTACT HOURS: 3 PER WEEK

CREDITS:1.5

Prerequisites: Knowledge of Physics up to 12th standard.

Course Objectives:

The aim of course is to provide adequate exposure and develop insight about the basic principles of physical sciences and its practical aspects which would help engineers to learn underlying principles of various tools and techniques they use in core engineering and related industrial applications. The course would also inculcate innovative mindsets of the students and can create awareness of the vital role played by science and engineering in the development of new technologies.

Course Outcomes (COs):

After attending the course students' will be able to

CO1: demonstrate experiments allied to their theoretical concepts

CO2: conduct experiments using LASER, Optical fiber.

CO3: participate as an individual, and as a member or leader in groups in laboratory sessions actively

CO4: analyze experimental data from graphical representations, and to communicate effectively them in Laboratory reports including innovative experiment.

CO5: Design solutions for real life challenges.

Course Content:

General idea about Measurements and Errors (One Mandatory):

i) Error estimation using Slide calipers/ Screw-gauge/travelling microscope for one experiment.

Experiments on Classical Physics (Any 4 to be performed from the following experiments):

- 1. Study of Torsional oscillation of Torsional pendulum & determination of time using various load of the oscillator.
- 2. Determination of Young's moduli of different materials.
- 3. Determination of Rigidity moduli of different materials.
- 4. Determination of wavelength of light by Newton's ring method.
- 5. Determination of wavelength of light by Laser diffraction method.
- 6. Optical Fibre-numerical aperture, power loss.

Experiments on Quantum Physics (Any 2 to be performed from the following experiments):

- 7. Determination of Planck's constant using photoelectric cell.
- 8. Verification of Bohr's atomic orbital theory through Frank-Hertz experiment.
- 9. Determination of Stefan's Constant.
- 10. Study of characteristics of solar cell.

Perform atleast one of the following experiments:

- 11. Determination of dielectric constant of given sample (frequency dependent)
- 12. Determination of velocity of ultrasonic wave using piezoelectric crystal.

**In addition it is recommended that each student should carry out at least one experiment beyond the syllabus/one experiment as Innovative experiment.

Probable experiments beyond the syllabus:

- 1. Study of dispersive power of material of a prism.
- 2. Study of viscosity using Poiseuille's capillary flow method/using Stoke's law.
- 3. Determination of thermal conductivity of a bad/good conductor using Lees-Charlton / Searle apparatus.
- 4. Determination of the angle of optical rotation of a polar solution using polarimeter.
- 5. Any other experiment related to the theory.

Recommended Text Books for Engineering Physics Lab:

Waves & Oscillations:

1. Vibration, Waves and Acoustics- Chattopadhyay and Rakshit Classical & Modern

Optics:

2. A text book of Light- K.G. Mazumder & B.Ghosh (Book & Allied Publisher)

Quantum Mechanics-I

1. Introduction to Quantum Mechanics-S. N. Ghoshal (Calcutta Book House)

Solid State Physics:

1. Solid State Physics and Electronics-A. B. Gupta and Nurul Islam (Book & Allied Publisher)

Text Books:

- 1. Practical Physics by Chatterjee & Rakshit (Book & Allied Publisher)
- 2. Practical Physics by K.G. Mazumder (New Central Publishing)
- 3. Practical Physics by R. K. Kar (Book & Allied Publisher)

CO-PO Mapping:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	3							
CO ₂	2	3	2	3	3							
CO ₃	2	3	2	3	3							
CO4	2	2	3	2	3							
CO ₅	2	2	3	2	3							

PAPER NAME: BASICELECTRICAL ENGINEERING LAB

PAPER CODE:EE(CE)191

CONTACT HOUR:3 PER WEEK

CREDIT:1.5

Prerequisites: Design and solve the fundamental electrical and electronics circuits

CourseObjectives:

To identify appropriate method of solving the fundamental electrical and electronics circuits. To Design and conduct experiments on electrical and electronics circuits

COURSE OUTCOMES:

CO	Statement
CO1	To Analyze a given network by applying KVL and KCL.
CO2	To Examine the Operation of DC Motor.
CO3	To Examine the Operation of Basic Electronics Devices and
	ICs.
CO4	To design simple electronics circuits.

List of Experiments: -

- 1. Familiarization with different passive and active electrical & electronic components.
 - 2. Familiarization with different Electrical & Electronics Instruments.
 - 3. Verification of KVL and KCL.
 - 4. Forward and reversal of DC shunt motor.
 - 5. Speed control of DC shunt motor.
 - 6.Study of the P-N junction diode V-I characteristics (Forward & Reverse Bias).
 - 7.Study of the Characteristics of Zener diode (Forward & Reverse Bias).
 - 8.Study of the Input and Output characteristics of BJT in CE mode.
- 9.Determination of offset voltage, offset current & bias current of OPAMP(IC741).
 - 10. Determination of CMRR and slew rate of OPAMP(IC741).
- 11. Determination of inverting and non-inverting gain of OPAMP(IC741).
 - 12. Extramural Experiment.

Textbooks:

- 1. Handbook of Laboratory Experiments in Electronics Engineering Vol. 1, Author Name: A.M. Zungeru, J.M. Chuma, H.U. Ezea, and M. Mangwala, Publisher -Notion Press Electronic Devices and Circuit Theory by Robert Boylestad Louis Nashelsky, 7th Edition, Prentice Hall
- 2. Experiments Manual for use with Grob's Basic Electronics 12th Edition by Wes Ponick, Publisher-McGraw Hill,2015
- 3. Laboratory Manual for 'Fundamentals of Electrical & Electronics Engineering': A handbook for Electrical & Electronics Engineering Students by Manoj Patil (Author), Jyoti Kharade (Author), 2020
- 4. The Art of Electronics, Paul Horowitz, Winfield Hill, Cambridge University Press, 2015.
- 5. A Handbook of Circuit Math for Technical Engineers, Robert L. Libbey CRC Press, 05-Jun-1991

Reference Books

- 1. Basic Electrical and Electronics Engineering, Author: S. K. Bhattacharya, Publisher: Pearson Education India, 2011
- 2. Practical Electrical Engineering
- 3. By Sergey N. Makarov, Reinhold Ludwig, Stephen J. Bitar, Publisher: Springer International Publishing, 2016
- 4. Electronics Lab Manual (Volume 2) By Navas, K. A. Publisher: PHI Learning Pvt. Ltd. 2018
- 5. Practical Electronics Handbook, Ian R. Sinclair and John Dunton, Sixth edition 2007, Published by Elsevier Ltd.

CO-PO Course Articulation Matrix Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO	PO	PO
										10	11	12
CO1	3	2	3	2	_	2	-	-	2	-	2	3
CO ₂	3	3	2	3	_	2	-	-	3	-	2	2
CO3	3	2	2	3	_	2	-	-	2	-	3	3
CO4	3	3	2	2	_	2	-	-	3	-	2	3

COURSE NAME: TECHNICAL REPORT WRITING AND LANGUAGE

LAB

COURSECODE: HU(CE)191

CONTACT:0:0:3

TOTAL CONTACT HOURS:3 PER WEEK

CREDITS:1.5

Prerequisites: A basic knowledge of listening and speaking skills and the ability to infer

meaning from audio-video/online lessons and CommunicationCompetence

Course Objective: To maximize exposure and train students in the professional use of English

in the globalized workplace.

CourseOutcome:

CO	Statement
CO1	Able to develop advanced verbal and nonverbal communication skills
	throughPowerPoint presentation.
CO2	AbledemonstrateinterpersonalskillsthroughGroupDiscussionbothfororg
	anizationalcommunication and campus recruitment drive.
CO3	Able to recognize and apply the knowledge of public speaking.
CO4	Ableto be industryreadyprofessionals
	byvariouspersonalitydevelopmentprograms.
CO5	Understand and write a detailed technical report as per organizational needs

Coursecontents:

Module 1: Presentation [2L+6P]

- (a) Teaching Presentation as a Skill
- (b)Speaking Strategies and Skills
- (c)Media and Means of Presentation
- (d)Extended Practice and Feedback

Module 2: Effective Presentation [2L+6P]

- a) Rules of making micro presentation.
- b) Assignment on micro presentation.
- c) Need for expertise in oral presentation.
- d) Assignment on Oral presentation.
- e) Macro Presentation in Groups.

Module 3: Writing a Technical Report [2L+6P]

- (a)Organizational Needs for Reports and types
- (b)Report Formats
- (c)Report Writing Practice Sessions and Workshops

Module 4: Speaking Skills [2L+6P]

- (a) The Need for Speaking: Content and Situation-based speaking
- (b) Public Speaking Activities: [Just a Minute, Paired Role Play, Situational Speaking Exercises]
- (c) The Pragmatics of Speaking—Pronunciation practice and learner feedback.

Text / Reference Books: Technical communication By Meeenakshi Raman and SangeetaSharma;Oxford Publication.

CO-POmapping

CO												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	ı	3	ı	3	2	ı	ı	3	3	1	3
CO2	3	3	-	1	1	3	1	1	3	3	-	3
CO3	2	2	2	ı	ı	2	1	1	3	3	1	3
CO4	2	. 1	-	. 1	1	3	. 1	. 1	3	3	1	3
CO5	1	2	-	-	2	2	-	2	3	3	1	3

COURSE NAME: COMPETENCIES IN SOCIAL SKILLS

COURSECODE: HU(CE)192

CONTACT:0:0:2

TOTAL CONTACT HOURS:2 PER WEEK

CREDITS:1

Pre requisites: Basic knowledge of LSRW skills.

Course Objective: This is an activity-based, goal-oriented, functional course in English Communication, which aims to make the students able and efficient communicators by helping them to be self-reflexive about English.

Course Outcomes:

CO1: Aims to equip the students with the relevant skills of presentation and expression needed in the academic as well as in the professional domains

CO2: Able to apply listening, speaking, reading and writing skills in societal and professional life.

CO3: Able to demonstrate the skills necessary to be a competent Interpersonal communicator.

CO4: Able to analyse communication behaviours.

CO5: Able to promote the acquisition of analytical and comprehension skills, writing skills exercises and interpersonal skills.

Course Content:

Module 1: Introduction to the Language Lab

- a. The Need for a Language Laboratory
- b. Tasks in the Lab
- c. Writing a Laboratory Note Book

Module 2: Active Listening

- a. What is Active Listening?
- b. Listening Sub-Skills—Predicting, Clarifying, Inferencing, Evaluating, Note-taking
- c. Academic Listening vs Business Listening
- d. Listening in Business Telephony
- e. Study of Contextualized Examples based on Lab Recordings

Module 3: Speaking

- a. Speaking—Accuracy and Fluency Parameters
- b. Pronunciation Guide—Basics of Sound Scripting, Stress and Intonation
- c. Fluency-focussed activities—JAM, Conversational Role Plays, Speaking using Picture/Audio Visual inputs
- d. Accuracy-focussed activities—Identifying Minimal Pairs, Sound Mazes, Open and Closed Pair Drilling, Student Recordings (using software)
- e. Identifying the tone (admiring, accusatory, ironical, sympathetic, evasive, indecisive, ambiguous, neutral etc.) of the writer and view-points.

Module 4:

- a. Industrialization and society
- b. Industrial psychology and industrial democracy.
- c. Environment in industry.
- d. Fatigue of workers.

e. Motivation, selection and training of workers.

Reference Books:

- 1. IT Mumbai, Preparatory Course in English syllabus
- 2. A New Look into Social Sciences, Sheikh Sabir, A.M.Shiekh and Jaya Dwadshiwar, Sage Publication New Delhi.
- 3. Sasikumar et al. A Course in Listening and Speaking. New Delhi: Foundation Books, 2005.
- 4. Tony Lynch, Study Listening. Cambridge: Cambridge UP, 2004.

CO-POmapping

CO												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	3	2	1	2	3	3	3	3
C02	3	1	2	1	3	1	1	1	3	3	3	3
CO3	1	2	1	1	2	1	ı	2	3	3	3	3
CO4	1	1	1	. 1	1	3	3	3	3	3	1	3
CO5	1	3	1	2	2	-	-	-	3	3	3	3

			1stYear	r2 nd Semester						
Sl.	Broad	Category	Course	Course Title	Н	lours	per	week		
No.	Category		Code		L	T	P	Tota 1	S	
			A.TI	IEORY				_		
1	ENGG	Major	CE201	Engineering Mechanics	3	0	0	3	3	
2	SCI	Multidisciplinary	CH(CE)201	Engineering Chemistry	2	0	0	2	2	
3	SCI	Multidisciplinary	M(CE)201	Engineering Mathematics -II	3	0	0	3	3	
4	HUM	Ability Enhancement Course	HU201	Professional Communication	2	0	0	2	2	
5	HUM	Value Added Course	HU202 Values and Ethics		2	0	0	2	2	
6	HUM	Value Added Course	HU203	Constitution of India	1	0	0	1	1	
			B.PR	ACTICAL						
1	ENGG	Major	CE291	Auto cad Lab	0	0	3	3	1.5	
2	НИМ	Ability Enhancement Course	HU291	Professional Communication Lab	0	0	2	2	1	
3	SCI	Skill enhancement Course	CH(CE)291	Engineering Chemistry Lab	0	0	2	2	1.0	
4	ENGG	Skill enhancement Course	ME(CE)291	Workshop & Manufacturing Practices Lab	0	0	3	3	1.5	
	Totalof Theory and Practical Courses									

^{*&#}x27;Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines

COURSENAME: ENGINEERING MECHANICS

COURSECODE:CE201 CONTACTS:3:0:0

TOTAL CONTACT HOURS: 36

CREDITS:3

Prerequisites:BasicConceptofPhysics, Engineering Mechanics.

Course Objectives: To understand the concept of basic engineering mechanism.

Course Outcomes:

CO1	Students will understand the concepts of engineering mechanics
CO2	Students will understand the vectorial representation of forces and moments
CO3	Students will gain knowledge regarding center of gravity and moment of inertia and apply them for
	practical problems.
CO4	Students will gain knowledge regarding various types of forces and reactions and tom draw free
	body diagram to quicker solutions for complicated problems.
CO5	Student will gain knowledge in solving problems involving work and energy
CO6	Student will gain knowledge on friction on equilibrium and its application.

Course Contents:

ModuleNo.	Syllabus	
		Contact Hrs.
Module 1:	IntroductiontoEngineeringMechanics: Force Systems Basic concepts,	8
	Particle equilibrium in 2-D & 3-	
	D;RigidBodyequilibrium;SystemofForces,CoplanarConcurrentForces,	
	Components in Space – Resultant- Moment of Forces and	
	itsApplication;CouplesandResultantofForceSystem,Equilibriumof	
	SystemofForces, Freebodydiagrams, Equations of Equilibrium of	
	CoplanarSystemsandSpatialSystems; VectorMechanics-dot	
	product,crossproduct,Problems.	
Module 2:	Friction: Typesoffriction, Limiting friction, Lawsof Friction, Staticand	4
	DynamicFriction;MotionofBodies,wedgefriction,screwjack&differentialscr	
	ewjack,Problems.	
Module 3:	Basic Structural Analysis:	4
	Equilibriuminthreedimensions; Methodof Sections; Methodof Joints; Ho	
	wtodetermineifamemberisintensionorcompression;	
	SimpleTrusses;Zeroforcemembers;Beams&types	
	ofbeams;Frames&Machines,Problems.	
Module 4:	CentroidandCentre of Gravity: Distributed Force: Centroid and	4
	Centre of Gravity; Centroids of atriangle, circular sector, quadrilateral,	
	etc., Centroid of simple figuresfromfirstprinciple,centroidofcomposite	
	sections;Centre ofGravity	
	anditsimplications, Problems.	

Module 5:	Moment ofInertia: Areamomentofinertia-	4
	Definition, Momento finertia of planes ections from first principles, Theorems of	
	momentofinertia, Momentofinertia of standard sections and composite sections	
	;Mass	
	momentinertiaofcircularplate, Cylinder, Cone, Sphere, Hook, Problems.	
Module 6:	Virtual Workand EnergyMethod: Virtual displacements, principle of	3
	virtual work for particle and idealsystem of rigid bodies, degrees of	
	freedom. Active force diagram, systems with friction, mechanical	
	efficiency. Conservative forces	
	andpotentialenergy(elasticandgravitational), energy equation for equilibrium.	
	Applications of energy method for equilibrium. Stability	
	ofequilibrium, Problems.	
Module 7:	Review ofparticledynamics: rectilinear motion; Plane curvilinear motion	5
	(rectangular, path, andpolar coordinates). 3-D curvilinear motion; Relative	
	and constrainedmotion; Newton 's 2 nd law (rectangular, path, and polar	
	coordinates). Work-kineticenergy, power, potential energy. Impulse-	
	momentum (linear,angular);Impact(Direct andoblique),Problems	
Module8:	Introduction toKinetics ofRigidBodies:	4
	Basicterms, general principles in dynamics; Types of motion, Instantaneous cent	
	reofrotationinplanemotionandsimpleproblems; D'Alembert'sprincipleandit	
	sapplicationsinplanemotionandconnectedbodies; Workenergyprincipleandit	
	S	
	application in plane motion of connected bodies; Kinetics of	
	rigidbodyrotation,Problems.	

Textbooks:

- 1. IrvingH.Shames(2006), EngineeringMechanics, 4thEdition, PrenticeHall
- 2. F.P.BeerandE.R.Johnston (2011), VectorMechanicsforEngineers, VolI-Statics, VolII, Dynamics, 9thEd, TataMcGrawHill
- 3. R.C.Hibbler(2006), Engineering Mechanics: Principles of Statics and Dynamics, Pears on Press.
- 4. AndyRuinaandRudraPratap(2011),IntroductiontoStaticsandDynamics,OxfordUniversityPress
- 5. ShanesandRao (2006), Engineering Mechanics, Pearson Education,
- 6. HiblerandGupta(2010), EngineeringMechanics(Statics, Dynamics) by Pearson Education

Referencebooks:

- 1. ReddyVijaykumarK.andK.SureshKumar(2010),Singer'sEngineeringMechanics
- 2. BansalR.K.(2010), AText BookofEngineering Mechanics, LaxmiPublications
- 3. KhurmiR.S. (2010), Engineering Mechanics, S. Chand&Co.
- 4. TayalA.K.(2010), Engineering Mechanics, Umesh Publications

CO – PO/PSOMapping:

cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	-	-	-	-	-	-	-	-	1	-	-
CO2	3	3	2	2	-	-	-	-	-	-	-	-	2	1	-
CO3	3	2	3	2	-	-	-	-	-	-	-	-	2	1	-
CO4	3	3	3	3	-	-	-	-	-	-	-	-	1	2	-
CO5	3	3	3	3	_	-	_	- 1	-	-	-	-	1	2	-
CO6	3	2	3	2	-	-	-	-	-	-	-	-	2	1	-

Course Name: ENGINEERING CHEMISTRY

Paper Code: CH (CE)201

CONTACT: 2-0-0

Total Contact Hours: 24

Credit: 2

Prerequisites:10+2

Course Objectives:

- To understand the basic principles of elements, organic reactions, drug synthesis and technological aspects of modern chemistry
- To apply the knowledge of different engineering materials, advanced polymers, and nanomaterials to solve complex engineering problems
- To analyse and evaluate quality parameters of water and its treatment
- Apply the knowledge of free energy, energy storage device, semiconductors, fuels and corrosion to design environment friendly & sustainable devices
- Apply the knowledge of different instrumental techniques to analyse unknown engineering materials.

Course Outcomes:

CO1. Able to understand the basic principles of elements, organic reactions drug synthesis and computational chemistry

CO2. Able to apply the knowledge of different engineering materials, advanced polymers, and nanomaterials to solve complex engineering problems

CO3. Able to analyse and evaluate water quality parameters and its treatment

CO4. Able to the knowledge of free energy, energy storage device, fuels and corrosion to design environment friendly & sustainable devices

CO5. Able to apply the knowledge of different instrumental techniques to analyse unknown engineering materials

Course Contents:

Module 1 - Elements and their properties (6L)

1. Elements and their properties (3L)

Bohr's theory for one electron system, Hydrogen spectrum, Quantum numbers, Atomic orbitals, Pauli's exclusion principle, Hund's rule, exchange energy, Aufbau principle, Electronic configuration and Magnetic properties.

2. Periodic Table for Engineers (3L)

Modern Periodic table, Periodic properties, study of advanced functional materials like Silicones, Silicates, Zeolite and alloys like steel, mischmetall, Neodymium alloy and their applications

Module 2 - Energy devices and Semiconductors (6L)

1.Use of free energy in chemical equilibria (3L)

Laws of Thermodynamics, Enthalpy, Entropy, Spontaneity, Electrochemical Cell, Dry Cell, Mercury Cell, Lead Storage batteries, Fuel Cells, Solar Cells, Nernst equation and applications, Electrochemical sensors

2. Crystals and Semiconductors (3L)

Crystals and their defects, Stoichiometric and Non-stoichiometric defects, Band theory and Doping, n-type

and p-type semiconductors, Superconductors

Module 3 – Industrial Applications of Chemistry (8L)

1.Advanced Polymeric materials (3L)

Classification, Engineering Plastics, conducting polymers, bio polymers, polymer composites

2.Industrial corrosion (2L)

Classification, Effects of corrosion, Preventive measures

3. Analysis of Water Quality (1L)

Water quality parameters

4. Fuels and their applications (2L)

Classification of Fuels, Calorific Values, Solid fuels; coal qualifications, Liquid Fuels; Knocking, Cetane and Octane number, composition and uses of gaseous fuels; water gas, Bio Gas, CNG, LPG.

Module 4 – Organic Reaction Products and their spectroscopic analysis (4L)

1.Organic Reactions (2L)

Substitution, Elimination and Addition reactions

2.Drug designing and synthesis (1L)

Paracetamol, Aspirin

3. Spectroscopic Analysis (1L)

UV – Visible Spectra, IR spectra

Suggested Text Books

- (i) Fundamentals of Engineering Chemistry, By Dr. Sudip Bandopadhyay & Dr. Nirmal Kumar Hazra
- (ii) A Text Book of Engineering Chemistry by Dr. Rajshree Khare
- (iii) Engineering Chemistry 1, Gourkrishna Dasmohapatra

Reference Books

- (i) Engineering Chemistry, 16th Edition, P.C. Jain & Dr. Monica Jain
- (ii) A Text Book of Engg. Chemistry, Shashi Chawla, Dhanpat Rai & Co.
- (iii) Fundamentals of Molecular Spectroscopy, by C. N.Banwell
- (iv) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan

CO v/s PO MAPPING

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12
1	3	3	2	2	2	_	_		-	_	2	2
2	3	3	3	3	_	_	2	_	_	_	2	2
3	3	3	-	-	_	_	3	_	_	_	3	2
4	3	3	3	2	-	-	3	-	-	-	3	2
5	3	3	3	3	2	_	-		-	_	2	2

COURSE NAME: ENGINEERING MATHEMATICS -II

COURSE CODE: M (CE) 201

CONTACT: 3-0-0

TOTAL CONTACT HOURS: 36

CREDIT: 3

Prerequisite: The students to whom this course will be offered must have the concept of (10+2) algebra and calculus.

Course Objectives:

The course is designed to equip the students with the necessary mathematical skills and techniques that are essential for an engineering course. To understand the most basic numerical methods to solve simultaneous linear equations.

Course Outcomes (COs):

On successful completion of the learning sessions of the course, the learner will be able to

CO1: Recall the properties and formula related to Fourier series, Fourier Transformations and Numerical Methods.

CO2: Determine the solutions of the problems related to matrix algebra, probability and Numerical Methods.

CO3: Apply the appropriate mathematical tools of matrix algebra, probability and Numerical Methods.

CO4: Analyze different engineering problems linked with matrix algebra, probability and Numerical Methods.

Course Content:

Module I: Numerical Methods (12L)

Introduction to error analysis, Calculus of finite difference. **Interpolation:** Newton forward and backward interpolation, Lagrange's interpolation, **Numerical integration:** Trapezoidal rule, Simpson's 1/3 rule. **Numerical solution of ordinary differential equation:** Euler method, Modified Euler method, Fourth order Runge-Kutta method.

MODULE II: Fourier series and Fourier Transform: (13 Lectures)

Fourier series: Dirichlet's Conditions; Euler's Formula for Fourier Series; Fourier Series for functions of period 2π ; Sum of Fourier series (examples); Theorem for the convergence of Fourier series (statement only); Fourier series of a function with its periodic extension; Half range Fourier series: Construction of half range Sine series and half range Cosine Series; Parseval's identity (statement only) and related problems.

Fourier Transform: Fourier Transform, Fourier Cosine Transforms, Fourier Sine Transforms (problems only); Properties of Fourier Transform: Linearity, Shifting, Change of Scale, Modulation (problems only); Fourier Transform of Derivatives (problems only); Convolution Theorem (statement only), Inverse of Fourier Transform (problems only).

MODULE III: Calculus of Complex Variable: (13 Lectures)

Functions of a Complex Variable Analytic Functions (definition and examples); Cauchy-Riemann Equations (statement only & related problems); Sufficient condition for a function to be analytic (statement only & related problems).

Cauchy's Theorem (statement only & related problems); Cauchy's Integral Formula(statement only & related problems); Cauchy's Integral Formula for the derivative of an analytic function(statement only & related problems); Cauchy's Integral Formula for the successive derivatives of an analytic function (statement only & related problems); Taylor's series and Laurent's series (problems only).

Zero of an Analytic Function and its order (definition & related problems); Singularities of an Analytic Function: Isolated Singularity and Non-isolated Singularity (definition & related problems); Essential Singularities, Poles (Simple Pole and Pole of Order *m*) and Removable Singularities (definition & related problems); Determination of singularities and their nature (problems only); Residue (definition & examples); Determination of the residue of a given function; Cauchy's Residue theorem (statement only & related problems).

Text Books:

- 1. Kreyszig, E., Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. Ramana, B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 3. Veerarajan, T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 4. Grewal, B.S., Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 5. Bali, N.P. and Goyal, M., A text book of Engineering Mathematics, Laxmi Publications, Reprint,
- 6. Samanta Guruprasad, A text book of Engineering Mathematics-III, New age International Publishers
- 7. Mollah, S. A, Numerical Analysis and Computational Procedures, Books and Allied (P) Ltd.

Reference Books:

- 1. Dey, Sukhendu, Gupta Sisir, Numerical Methods, MsGraw Hill Education(India) Private Limited.
- 2. Jain, M. K., Iyengar, S. R. K., Jain, R. K., Numerical Methods, New age International Publishers

CO-PO Mapping:

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
co												
CO1	3	2	-	-	-	-	-	-	ı	-	-	2
CO2	3	2	-	-	-	-	-	-	-	-	-	2
CO3	3	2	2	-	-	-	-	-	1	-	-	2
CO4	2	3	2	2	-	-	-	-	-	-	_	2

COURSE NAME: PROFESSIONAL COMMUNICATION

COURSECODE: HU(CE)201

CONTACT:2:0:0

TOTAL CONTACT HOURS: 24

CREDITS:2

Pre-requisites:	Basic(10+2)levelof
1	knowledgeofEnglishgrammar,vocabularyreading
	andwriting skills.
CourseObjectives	The course aims to impart domain and industry-specificcommunicationskillsinaglobalizedcontextandto promote the understandingofbusiness communicationpracticesandcross culturaldynamics.
CourseOu tcomes:	Bypursuingthis coursethestudents shallbeableto
	CO1. Define, describe and
	classifythemodalitiesandnuancesofcommunicationin
	aworkplacecontext.
	CO2. Review, appraise and understand the modes,
	contexts and appropriacy
	ofcommunicating acrosscultures and societies.
	CO3. Identify, interpret and
	demonstratethebasicformats,templatesof business and officialcommunication.
	CO4. Identify, compare and illustrate reading strategies and basic writing strategies.
	CO5.Interpret, analyze and evaluate semantic-structural,interpersonaland multicultural dynamics in businesscommunication.

Course Content:

Module1:

VerbalandNonverbalcommunication

Definition, Relevance and Effective Usage

Components of Verbal Communication: Written and Oral Communication

ComponentsofNon-

verbalCommunication:Kinesics,Proxemics,Chronemics,HapticsParalanguage BarrierstoEffectiveCommunication 4 L

Module2:

Workplace CommunicationEssentialsandCrossCulturalCommunication 4L

CommunicationattheWorkplace—Formal and Informal Situations

Language in Use—Jargon, Speech Acts/Language Functions, Syntactical and Grammatical Appropriacy CulturalContexts in Global Business:HighContextandLowContextCultures

UnderstandingCulturalNuancesandStereotyping

Achieving Culturally Neutral Communication in Speech and Writing

Module3: 4L

Reading Strategies and Basic Writing Skills

Reading: Purposes and Nature of Reading

Reading Sub-Skills—Skimming, Scanning, Intensive Reading

Reading General and Business Texts(Reading for Comprehension and Detailed Understanding)

Basic Writing Skills—Paragraph and Essay writing, writing technical documents

Writing Technicalities—Paragraphing, Sentence Structure and Punctuation

Module4: 4L

ReportWriting

NatureandFunctionofReports

TypesofReports

ResearchingforaBusinessReport

Format, Language and Style

ReportDocumentation

Module5:

EmploymentCommunication

a. WritingBusinessLetters (Enquiry, Order, Sales, Complaint, Adjustment, Job Application, Offer)

2L

b. Creating an Employee Profile-- PreparingaCV orRésumé.

CreatingaDigital/OnlineProfile—LinkedIn(Résumé/VideoProfile)

2L

c. Writing Other Interoffice Correspondence--E-mails:types,convention,andetiquette, Memo, Notices and Circulars 2L

d. Preparing Meeting Documentation—Drafting Notice and Agenda of Meetings, Preparing Minutes of Meetings. 2L

References:-

- 1. Meenakshi Raman and Sangeetha Sharma. Technical Communication. 3rd edition. New Delhi:OxfordUniversity Press, 2015.
- 2. Mark Ibbotson. Cambridge English for Engineering. Cambridge: Cambridge University Press, 2008.
- 3. Mark Ibbotson. Professional Englishin Use: Engineering. Cambridge: Cambridge UP, 2009.
- 4. Lesikaretal. Business Communication: Connecting in a Digital World. New Delhi: Tata McGraw-Hill, 2014.

- 5. John Seeley. Writing Reports. Oxford: Oxford University Press, 2002.
- 6. JudithLeigh. CVs and JobApplications. Oxford: Oxford University Press, 2002.
- 7. Judith Leigh. Organizing and Participating in Meetings. Oxford: Oxford University Press, 2002.
- 8. Michael Swan. Practical English Usage. Oxford: OUP, 1980.
- 9. Pickett, LasterandStaples. *TechnicalEnglish:Writing,Reading&Speaking*. 8thed.London:Longman,2001.
- 10. DianaBooher. *E-writing:21st CenturyTools forEffectiveCommunication*.

Links:-

- 1. PurdueUniversity'sOnlineWritingLab(OWL)-https://owl.purdue.edu/
- 2. Business English Pod-https://www.businessenglishpod.com/

CO-POMapping

CourseName: ProfessionalCommunication

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO
										10	11	12
CO.1	-	-	-	-	-	2	1	1	2	3	-	2
CO.2	-	-	-	-	-	1	1	2	2	3	-	3
CO.3	-	-	-	-	-	3	3	1	1	3	2	3
CO.4	-	-	-	-	-	3	3	1	-	3	-	3
CO.5						2	2	2	2	3	-	3

Course Name: Values and Ethics Course Code: HU(CE)202

Contacts: 2:0:0

Total Contact Hours: 24

Credit: 2

Prerequisite: 10+2

Course Objectives:

Understood human values, their significance and role in life. Promote self-reflection and critical inquiry that foster critical thinking of one's value and the values of others. Practice respect for human rights and democratic principles.

Course Outcomes:

CO 1	Understand the significance of values, various approaches to ethics and its applications in life and profession.
CO2	Able to distinguish Self and the Body, to understand Harmony in the Self
CO3	To identify and eradicate environmental concerns through technology
CO4	Demonstrate work ethics and analyse business strategies
CO5	Ability to understand gender terminologies and to identify gender issues

Course Content:

Module: 1 Introduction:(4L)

Definition of Ethics; Approaches to Ethics: Psychological, Philosophical, and Social

Types of values-Social, Psychological, Aesthetic, Spiritual, and Organizational

Natural acceptance of human values. Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order.

Module 2: Universal Human Harmony. (4L)

Basic Human Aspirations, Happiness and Prosperity, Self-Exploration, Self and the Body Understanding the harmony in the Nature.

Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature.

Values Crisis in contemporary society Nature of values: Value Spectrum of a good life (Maslow's Pyramid)

Module: 3 Ethical Concerns: (6L)

Renewable Energy Resources, Environmental degradation and pollution. Eco-friendly Technologies. Environmental Regulations, Environmental Ethics

Rapid Technological growth and depletion of resources, Reports of the Club of Rome.

Problems of Technology transfer- Technology assessment impact analysis -Human Centered Technology.

Module: 4 Ethics of Profession: (4L)

Work Ethics and Work Values, Business Ethics, Human values in organizations: Social and ethical responsibilities of Technologists. Codes of professional ethics.

TypesofEthicalissues-InternalEthicsofBusiness-

WhistleBlowing

Impact of Ethics on Business Policies and Strategies-Ethical Leadership-Characteristics

Module: 5 Self Development AND Gender Awareness (6L)

Definition of Gender, Basic Gender Concepts and Terminology, Exploring Attitudes towards Gender,

Social Construction of Gender

Gender Roles and Relations, Types of Gender Roles, Gender Roles and Relationships Matrix, Gender-based Division and Valuation of Labour. Gender Development Issues, Identifying Gender Issues

Text Books:

- 1. Beneria, Lourdes. (2004). Gender, Development, and Globalization: Economics as if All People Mattered. Roultedge Press. (GDGE)
- 2. Molyneux and Razavi. (2002). Gender Justice, Development and Rights. Oxford University Press (GJDR or WGD)
- 3. Visvanathan, Duggan, Wiegersma and Nisonoff. (2011).
- 4. The Women, Gender and Development Reader. 2nd Edition. Zed Press (WGD)
- 5. Stephen H Unger, Controlling Technology: Ethics and the Responsible Engineers, John Wiley & Sons, New York 1994 (2nd Ed)
- 6. Deborah Johnson, Ethical Issues in Engineering, Prentice Hall, Englewood Cliffs, New Jersey 1991.
- 7. A N Tripathi, Human values in the Engineering Profession, Monograph published by IIM, Calcutta 1996.

CO PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	2	-	-	-	-	-	3	3	-	2
CO2	-	-	-	-	-	3	3	-	3	2	-	-
CO3	-	3	3	-	3	2	3	-	-	-	-	2
CO4	2	-	-	2	-	-	-	3	-	-	2	-
CO5	-	3	-	-	-	2	1	-	-	2	-	2

Paper Name: Constitution of India

Paper Code: HU(CE)203

Credit: 01

No. of lectures: 12

Prerequisite: 10+2

Course Objectives: To know the importance of Constitution and Government

Course Outcomes: On Completion of this course student will be able to

CO1: To Identify and explore the basic features and modalities of Indian constitution.

CO2: To Differentiate and relate the functioning of Indian parliamentary system at the centre and state level.

CO3: To Differentiate the various aspects of Indian Legal System and its related bodies.

Course Content:

Module 1: History of Making of the Indian Constitution: History. Drafting Committee, (Composition & Working)

Philosophy of the Indian Constitution: Preamble Salient Features 3L

Module 2: Fundamental Rights, Fundamental Duties, Directive Principles of State Policy: 6L

The Right to Equality

The Right to Freedom: I (Article 19)

The Right to Freedom: II (Articles 20, 21 and 22)

The Right against Exploitation The Right to freedom of Religion Cultural and Educational rights

The Right to Property

The Right to Constitutional Remedies

Fundamental Duties

Module-3:Organs of Governance:

3L

Parliament - Composition - Qualifications and Disqualifications -Powers and Functions - Executive- President -Governor - Council of Ministers - Judiciary, Appointment and Transfer of Judges, Qualifications - Powers and Functions

Text / Reference Books:

- 1) Indian Constitution by D.D.Basu, The Publisher, LexisNexis
- 2) Constitution of India by Subhas C Kasyap, Vitasta Publishing
- 3) The Constitution of India, P.M Bakshi, Universal Law Publishing Co.Ltd, New Delhi, 2003.
- 4) Indian Constitution Text Book Avasthi, Avasthi, Publisher: LAKSHMI NARAIN AGARWAL
- 5) Introduction to the Constitution of India, Brij Kishore Sharma, PHI

CO PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	ı	2	3	1	ı	-	-	-	-	-	•
CO2	-	-	-	3	•	2	3	-	-	-	-	-
CO3	-	2	2	3	3	2	2	-	-	-	-	-

Course Name: ENGINEERING CHEMISTRY LAB

Paper Code: CH (CE)291

Contact: 0-0-2

Total Contact Hours: 24

Credit: 1

Prerequisites:10+2

Course objectives:

- Study the basic principles of pH meter and conductivity meter for different applications
- Analysis of water for its various parameters & its significance in industries
- Learn to synthesis Polymeric materials and drugs
- Study the various reactions in homogeneous and heterogeneous medium

Course Outcome

CO1: Able to operate different types of instruments for estimation of small quantities chemicals used in industries and scientific and technical fields.

CO2: Able to analyse and determine the composition and physical property of liquid and solid samples when working as an individual and also as a team member

CO3: Able to analyse different parameters of water considering environmental issues

CO4: Able to synthesize drug and sustainable polymer materials.

CO5: Capable to design innovative experiments applying the fundamentals of modern chemistry

Course Contents:

- 1. Determination of the concentration of the electrolyte through conductance measurement.
- 2. Determination of water quality measurement techniques.
- 3. Determination of the concentration of the electrolyte through pH measurement.
- 4. Estimation of Cu in brass
- 5. Estimation of Fe₂O₃ in Cement
- 6. Isolation of graphene from dead dry batteries and their use for temporary soldering.
- 7. Synthesis of Silver Nanoparticles doped organic thin film for organic transistors.
- 8. Estimation of corrosion in a given sample metal.
- 9. Preparation of Si-nano crystals for future memory devices.
- 10. Green Synthesis of ZnO based Polymer Nano composites.
- 11. Synthesis of polymers for electrical devices and PCBs.
- 12. Determination of Partition Coefficient of acetic acid between two immiscible liquids.
- 13. Drug design and synthesis
- 14. Rheological properties of the Newtonian fluids
- 15. Innovative Experiments

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	2	-	-	1	1	-	2	3	-	2
CO2	-	-	2	2	-	3	3	-	2	3	-	3
CO3	-	-	2	2	-	3	3	2	2	3	-	3
CO4	-	-	-	-	-	3	3	2	2	3	-	3
CO5	-	-	2	2	-	3	3	2	2	3	-	3

COURSENAME: Workshop and Manufacturing Practices Lab

COURSECODE: ME(CE)291

CONTACT:0:0:3 CREDITS: 1.5

Prerequisite:Physics&Mathematics(10+2Level)

Course Objectives:

To impart knowledge and skill to use tools, machines, equipment, and measuring instruments

Course outcomes:

CO1: GainbasicknowledgeofWorkshop Practice and Safetyuseful for our daily living.

CO2: UnderstandtheuseofInstrumentsofapatternshoplikeHand Saw,Jack Plain,Chiselsetc.

CO3: Apply and performing operations like such as Marking, Cutting et cused in manufacturing processes.

CO4:

AnalysethevariousoperationsintheFittingShopusingHackSaw,variousfiles,Scriber,etctounderstandthe conceptoftolerancesapplicableinallkind ofmanufacturing.

CO5:

GethandsonpracticeofinWeldingandapplyvariousmachiningprocesseswhichgivealotofconfidence tomanufacture physicalprototypesinprojectworks.

Course Content:

3P

(i) Theoretical discussions:

- 1. ManufacturingMethods-casting, forming,machining,joining,advanced manufacturing methods
- 2. Fittingoperations&powertools
- 3. Carpentry
- 4. Welding(arcwelding&gaswelding),brazing
- 5. Electrical&Electronics
- 6. Metalcasting
- 7. CNCmachining, Additive manufacturing, 3D Printing
- 8. Plasticmoulding&GlassCutting

(ii)WorkshopPractice:

At least 6 modules should be covered

Module 1-Machineshop

6P

Typicaljobsthatmaybemadeinthispracticemodule:

- i. Tomakeapin fromamild steelrod inalathe.
- ii. Tomakerectangularandveeslotinablockofcastironormildsteelinashapingand/ormillingmachine.

Module2-Fitting shop

6P

Typicaljobsthatmaybemadeinthispracticemodule: TomakeaGaugefromMSplate.

Module3 - Carpentry Shop

6P

 $Typical jobs that may be made in this practice module: To make wood en joints and/or\ a pattern or like.$

Module4-Welding & Soldering shop

6P

Typicaljobsthatmaybemadeinthispracticemodule:

- i. Arc Welding: To jointwothick (approx5mm) MS plates by manual metalar cwelding.
- ii. Gas Welding: Tojointwothinmild steelplatesorsheetsbygaswelding.
- iii. Housewiring,softSoldering

Module 5–Smithy & Casting

6P

Typicaljobsthatmaybemadeinthispracticemodule:

- i. Asimplejobofmakingasquarerodfromaroundbar or similar.
- ii. One/twogreensandmouldstoprepare, andacastingbedemonstrated.

Module6- CNC Machining & LaserCutting

6P

Typicaljobsthatmaybemadeinthispracticemodule:

- i. Atleastonesample shape on mild steel plate shouldbe made using CNC Milling / CNC Lathe Machine
- ii. Atleastonesampleshape onglassshouldbe madeusinglasercuttingmachine.

Module 7 – 3D Printing

6P

- i) Exposure to a 3D printing machine,
- ii) 3D printing of at least one sample model using available materials.

Examinations could involve the actual fabrication of simple components, covered above.

utilizingoneormoreofthetechniques

TextBooks:

- 1. HajraChoudhuryS.K., HajraChoudhuryA.K.andNirjharRoyS.K.,-ElementsofWorkshopTechnology||, Vol.I2008andVol.II2010,M edia promotersandpublishersprivatelimited, Mumbai.
- 2. RaoP.N.,-ManufacturingTechnology||, Vol.IandVol.II, TataMcGrawHillHouse, 2017.

ReferenceBooks:

- 1. GowriP., HariharanandA. SureshBabu, ManufacturingTechnology—I, PearsonEducation, 2008.
- 2. RoyA.Lindberg,-Processes and MaterialsofManufacture, 4thedition, PrenticeHallIndia, 1998.
- 3. KalpakjianS.andStevenS.Schmid,ManufacturingEngineeringandTechnology,4thedition,PearsonEducation IndiaEdition,2002.
- 4. ManufacturingScience by A. Ghoshand A.K. Mallick, Wiley Eastern.
- 5. PrinciplesofMetalCutting/PrinciplesofMachineToolsby G.C. SenandA.Bhattacharya,NewCentralBookAgency,Kolkata.

CO-PO/PSOMapping:

CO Codes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	3						2		2	2					
CO2	3						2		2	2					
CO3	3						2		2	2			2		2
CO4	3						2		2	2			2		2
CO5	3	2	2				2		2	2					

Paper Name: AUTO CAD Lab

Paper Code: CE291 Contact: (0:0:3)

Credit: 1.5

Prerequisite: Basic idea of Engineering drawing

Course objectives:

Impart the knowledge of CAD commands for drawing 2D building drawings required for various civil engineering applications.

Course Outcomes

CO1: Develop geometric figures using various commands

CO2: Apply preliminary settings of CAD work sheet and develop plan of various buildings

CO3: Develop views of various type of buildings with detailing

CO4: Develop plan, elevation and sections of building structures

CO5: Demonstrate computer aided drafting.

MODULE I - Introduction to Computer Aided Drafting:

History – application – Advantages over manual drafting –Hard ware requirements – Soft ware requirements – Different software - Auto CAD – Pro E – IDEAS and Open-Source drafting software etc. CAD basics – main menu, starting a new drawing, open, save, save as, exit, drawing editor, entering commands using mouse, pull down menu, getting help, data entry, entity selection.

MODULE II - Draw and modifying commands:

4P

3P

setting commands - limits of drawing, units, grid, snap, osnap, co-ordinates, ortho mode locating a point — absolute coordinate system-relative coordinate system-polar coordinate system-direct distance entry system. Draw commands- line, circle, arc, ellipse, rectangle, polygon, spline, polyline, etc. Editing commands-erase, copy, array, rotate, mirror, offset, scale move, trim, fillet, chamfer, extend, stretch, p-line edit, explode etc.

MODULE III - Working with CAD: 4P

Properties of lines – Colour, line weight, line type, layer properties - Hatch and gradients, dimensions and text on drawings - Developing simple orthographic views and dimensions it with text - Developing detailed orthographic views with all features.

MODULE IV – Development of plan, elevation and sections of building structures:

7P

Develop plan of single storied and multi storied buildings (Eg., Residential building, Library hall, Town hall, School building, Hospital building etc.); Develop elevation and sectional views of single storied and multi storied buildings (Eg., Residential building, Library hall, Town hall, School building, Hospital building etc.);

Detailing of building components like Doors, Windows, Roof Trusses etc.

TEXT BOOKS

- 1. AutoCAD 2014 for Engineers Vol.I Sankarprasad Dev
- 2. Engineering Drawing M.B.Shah, B.C.Rana

CO PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	2	3	-	-	-	-	-	-	-	-
CO2	-	-	-	3	-	2	3	-	-	-	-	-
CO3	-	2	2	3	3	2	2	-	-	-	-	-
CO4	2	-	-	3	-	-	-	3	-	-	-	-
CO5	-	3	-	3	-	2	2	-	-	-	-	-

Paper Name: Professional Communication Lab

Paper Code: HU(CE)292

Contact: (0:0:2)

Credit: 1

Pre requisites: Basic knowledge of LSRW skills.

Course Objectives: To train the students in acquiring interpersonal communication skills by focussing on language skill acquisition techniques and error feedback.

Course Outcome:

By pursuing this course the students will be able to:

CO1: Recognize, identify and express advanced skills of Technical Communication in English through Language Laboratory.

CO2: Understand, categorize, differentiate and infer listening, speaking, reading and writing skills in societal and professional life.

CO3: Articulate and present the skills necessary to be a competent Interpersonal communicator.

CO4: Deconstruct, appraise and critique communication behaviours.

CO5: Adapt, negotiate and facilitate with multifarious socio-economical and professional arenas with effective communication and interpersonal skills.

Course Contents:

Module 1: Introduction to the Language Lab

- a. The Need for a Language Laboratory
- b. Tasks in the Lab
- c. Writing a Laboratory Note Book

Module 2: Active Listening

- a. What is Active Listening?
- b. Listening Sub-Skills—Predicting, Clarifying, Inferencing, Evaluating, Note-taking
- c. Listening in Business Telephony

Module 3: Speaking

- a. Speaking—Accuracy and Fluency Parameters
- b. Pronunciation Guide—Basics of Sound Scripting, Stress and Intonation
- c. Fluency-focussed activities—JAM, Conversational Role Plays, Speaking using Picture/Audio Visual inputs
- d. Accuracy-focussed activities—Identifying Minimal Pairs, Sound Mazes, Open and Closed Pair Drilling, Student Recordings (using software)
- e. Group Discussion: Principles and Practice
- f. Giving a Presentation—Learning Presentation Basics and Giving Micro Presentations

Module 4: Lab Project Work

- a. Writing a Book Review
- b. Writing a Film Review
- c. Scripting a Short Presentation (2 minutes)
- d. Making a short video CV (1-2 minutes)

References:

- 1.IIT Mumbai, Preparatory Course in English syllabus
- 2. IIT Mumbai, **Introduction to Linguistics** syllabus
- 3. Sasikumar et al. A Course in Listening and Speaking. New Delhi: Foundation Books, 2005.
- 4. Tony Lynch, Study Listening. Cambridge: Cambridge UP, 2004.

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	2	-	-	1	1	-	2	3	-	2
CO2	-	-	2	2	-	3	3	-	2	3	-	3
CO3	-	-	2	2	-	3	3	2	2	3	-	3
CO4	-	-	-	-	-	3	3	2	2	3	-	3
CO5	-	-	2	2	-	3	3	2	2	3	-	3

			2 nd	Year3 rd Semester					
Sl.	Broad	Category	Course	Course	Н	ours p	er wee	k	Credits
No.	Category		Code	Title	L	Т	P	Tota	ıl
				A.THEORY					
1	ENGG	Major	CE301	Surveying	3	0	0	3	3
2	ENGG	Major	CE302	Building Materials and Construction	2	0	0	2	2
3	ENGG	Major	CE303	Strength of Materials	3	0	0	3	3
4	ENGG Major		CE304	Engineering Geology	2	0	0	2	2
5	ENGG	Minor	CS(CE)301	Computer Fundaments and prgramming	3	0	0	3	3
6	ENGG	Minor	CE305	Composite Materials	3	0	0	3	3
				B.PRACTICAL					
6	ENGG	Major	CE391	Surveying Lab	0	0	3	3	1.5
7	ENGG	Major	CE392	Engineering Geology Lab	0	0	3	3	1.5
8	ENGG	Skill enhancement Course	CS(CE)391	Computer Fundaments and prgramming Lab	0	0	3	3	1.5
9	ENGG	Major	CE393	Building Planning and drawing Lab	0	0	2	2	1.0
10	HUM	Ability Enhancement Course	HU(CE)391	Life skill	0	0	1	1	0.5
		Totalof Theor	y,Practicaland	MandatoryActivities/Course	S			28	22.0

^{*&#}x27;Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines.

COURSE NAME:

SURVEYINGCOURSECODE:CE

301CONTACT:3:0:0

TOTAL CONTACT HOURS: 36 HRS

CREDITS:3

Prerequisites: Studentshouldhaveknowledgeaboutmeasurement andmathematicalknowledge

Course Objective: The objective of this course is appreciated of the need for lifelong learningthrough the discussion of recent changes in survey procedures and equipment and also have

the ability to apply knowledge of mathematics, science, and engineering to understand the measurement techniques and equipment used in surveying.

CourseOutcome:

CO1	Studentswillsummarizesurveyingtechniquesthatwillremaincorrectfor longperiodoftime.
	Studentswillexperiment about different methodsusinginstrument
CO2	suchasChain,Compass,Leveling,minorinstruments likeplanimeter,etc.
CO3	StudentswilllearnaboutArea&Volumecalculation.
CO4	Students will evaluateaboutTrigonometricallyleveling.
CO5	Students will analyze about simple & complex problems of different instrument methods of Survey.

COURSECONTENTS:

Module-1:[1L]

Introduction: Definition, classification of surveying, objectives, principles of surveying.

Module-2:[9L]

Chain surveying: Chain and its types, Optical square, Cross staff, Reconnaissance and siteLocation, Locating ground features by offsets – Field book. Chaining for obtaining the outlineof structures, Methods for overcoming obstacles, Conventional symbols, Plotting chain surveyand Computationofareas, Errorsinchain surveying and their elimination: Problems.

Compass Surveying: Details of prismatic compass, Use and adjustments, Bearings, Localattraction and its adjustments. Chain and compass surveying of an area, Booking and plotting, Adjustments of traverse, Errors in compass surveying and precautions: Problems.

Module-3:[3L]

PlaneTableSurveying: Equipment, Orientation, Methods of Plane Tabling, Three Point Problems.

Module-4:[9L]

Leveling: Introduction, Basic definitions, Detail of dumpy Level, Temporary adjustment of Levels, Sensitiveness of bubbletube; Methods of leveling—Differential, Profile & fly Leveling, Effect of curvature and refraction, Automatic levels, Plotting longitudinal sections and Cross sections: Measurement of area and volume.

Contouring: TopographicMap, CharacteristicsofContour,ContourInterval. MethodsofLocatingContours,InterpolationofContours.

Module-5:[9L]

Theodolite Surveying: Components of a Transit Theodolite, Measurement of horizontal andvertical Angles, Co-ordinates and traverse Table.

Tacheometry: Definition, Details of stadia System, Determination of horizontal and vertical distance with Tacheometer-Staffheld vertically and normal to the line of sight.

Module-6:[3L]

Simple&TransitionCurves: Definition, Degree of Curve, Elements of Simple Curve, Setting out by Linear method and Rankine's tangential method, Transition Curves.

Module-7:[3L]

Introduction to Total Station with Field

applications.Text/ReferenceBooks:

SlNo	Title	Author
1	Surveying:-Vol-I&II	B.C.Punmia
2	Surveying&Leveling	R.Subramanian(OXFORD)
3	Surveying&LevelingVol-I[Part I&II]	T.P.Kanetkar&Kulkarni
4	Surveying:-Vol-I&II	S.K.Duggal
5	FundamentalofEngineeringSurvey	J.K. Ghosh(StudiumPress,Roorkee)
6	HigherSurveying	Dr.A. M.Chandra
7	Surveying	R.B.Gupta&B.K.Gupta
9	Planeand GeodeticSurveying (Vol-I&II)	DavidClark
10	FundamentalofSurveying	S.K.Roy
11	Surveying	Saikia &Das(PHI)
		l

CO-POmapping:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	1	1	1	3	3	3	3	3	3	3
CO2	3	3	3	2	2	2	1	2	3	2	3	2	2	3	2
CO3	1	1	1	-	-	-	-	-	1	1	1	1	1	1	1
CO4	3	3	3	3	2	2	2	1	3	2	2	2	2	2	2
CO5	3	3	3	3	2	1	1	1	3	2	1	2	2	2	2

COURSENAME: BUILDING MATERIAL SAND CONSTRUCTION

COURSECODE:CE302 CONTACT:2:0:0

TOTAL CONTACT HOURS: 24 HRS

CREDITS:2

Prerequisites: NoPre-Requisiterequired(NPR)

Course Objective: The objective of this course is know the student about the basicbuildingmaterials, properties and their applications., toknow the smartbuilding materials, external paints and their uses to understand different types of mason ries and their applications

CourseOutcome:

CO1	Studentswillsummariesbasicknowledgeaboutvariouskindofmaterialsusedinconstructionwork.
CO2	Studentswilldifferentiateaboutdifferenttypesofbuildingfoundation
	i.e.shallowanddeep foundation,theirmechanismsanduses.
CO3	summariesknowledgeaboutvarious structuralmembersofabuildinglike-
	walls,door,window,stair,
	flooring,roofetc.
CO4	Extendtoapplytheir knowledgeatthetimeofdecisionmakingfor
	applicationofstructuralmemberincludingmaterialused.

COURSECONTENTS:

Module-1:[9L]

Bricks: Classification, Characteristics of good bricks, Ingredients of good brick earth, Harmfulsubstance inbrick Earth, Differentforms of bricks, testing of bricks as per BIS. Defects ofbricks.Flyashbricks[2L+1T]

Aggregates: Classification, Characteristics, Deleterious substances, Soundness, Alkali –aggregatesreaction,Fine aggregates,coarseaggregates,testing ofaggregates[2L+1T]

Lime:Impuritiesinlimestone,Classification,Slakingandhydration,Hardening,Testing,Storage, Handling, **Cement:** OPC: Composition, PPC, Slag cement, Hydration, setting time**Concrete**: Types,ingredients, W/C ratio, Workability, Different grades in cement concrete,Testsoncementconcrete[2L+1T]

Module-2:[9L]

Mortars: Classification, Uses, Characteristics of good mortar, Ingredients. Cement mortar, Limemortar,Limecementmortar,specialmortars[2L+1T]

Wood and Wood Products: Classification of Timber, Structure, Characteristics of good timber, Seasoning of timber, Defects in Timber, Diseases of timber, Decay of Timber, Preservation of

Timber Testing of Timber, Veneers, Plywood, Fibre Boards, Particle Boards, Chip Boards, Black Boards, Button Board and Laminated Boards, Applications of wood and wood products[2L+1T]

Paints, Enamels and Varnishes: Composition of oil paint, characteristic of an ideal paint, preparation of paint, covering power of paints, Painting: Plastered surfaces, painting wood, surfaces, painting metal Surfaces. Defects, Effectof weather, enamels, distemper, waterwash and colour wash, Varnish, French Polish, Wax Polish. Miscellaneous Materials: Gypsum: Classification, Plaster of Paris, Heat and sound in sulating materials, Geo-synthetics [2L+1T]

Module-3:[9L]

Foundations: Function of Foundations, Essential requirement of good foundation, Differenttypes of shallow and deep Foundations. Uses of Spread foundation, pile and well foundation[2L+1T]

Brick masonry: Definitions, Rules for bonding, Type of bonds – stretcher bond, Header bond, English bond, Flemish Bond, Comparison of English Bond and Flemish Bond (one and one andhalfbrickthickwall).Cavitywall[2L+1T]

Wall, Doors and Windows: Load bearing wall, Partition wall, Reinforced brick wall Commontypesofdoors andwindowsoftimberandmetal [2L+1T]

Module-4[9L]

Stairs:TechnicalTerms,Requirementsofgoodstair,Dimensionofsteps,Classification,Geometric design of a dog legged stair case, Elevation and cross section of different type of staircases.[2L+1T]

Flooring:Componentsofafloor,selectionofflooringmaterials,Brickflooring,Cementconcreteflooring,mosaic,marble,Terrazzo flooring,Tiledroofing[2L+1T]

Plastering and Pointing: Plastering with cement mortar, Defects in plastering, pointing, whitewashing, colour washing, Distempering, **Roofs:** Types, Pitched roofs and their sketches, Lean –to roof, coupled and collared roofs, King Post – Truss, Queen post truss and Simple steel Truss ,RoofCoveringmaterials:AC sheets GIsheet[2L+1T]

Text/ ReferenceBooks:

Sl	Name	Author	Publisher		
no					
1	BuildingMaterials	S.K.Duggal			
2	BuildingMaterials	P.C.Varghese	PHI		
3	EngineeringMaterials	S.C.Rangwala			
4	ConcreteTechnology	M.S.Shetty			
5	ConcreteTechnology[A.M.Nevile&J.J.Brooks	PearsonE ducation		
6	Building Construction	B.C.PUNMIA			

CO-POmapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	3	2	1	-	1	1	1	1	1	1	1	1	2	2	-
CO2	2	3	1	1	-	-	-	-	-	-	-	-	2	2	-
СОЗ	3	2	1	-	-	-	-	-	-	-	-	-	2	2	-
CO4	2	3	1	-	-	-	-	-	-	-	-	-	2	2	-

COURSE NAME: STRNGTH OF MATERIALS

COURSECODE:CE303 CONTACT:3:0:0

TOTAL CONTACT HOURS: 36 HRS

CREDITS:3

 $\label{lem:precequisites:} \textbf{Precequisites:} Students hould have the knowledge about Elements of Civil Engineering \& Mechanics.$

Course Objective: The objective of this course is elaborate on the knowledge of engineeringmechanics (statics) and to teach the students the purpose of studying strength of materials withrespecttocivil engineeringdesignandanalysis. The course introduces the students to the concepts of engineering mechanics of materials and the behavior of the materials and structures underapplied loads.

CourseOutcome:

CO1	Interpret the concepts of stress and strain at a point as well as the stress-strainrelationshipsforhomogenous, isotropic materials.
CO2	Analyze the stresses and strains associated with thin-wall spherical and cylindricalpressure vessels.
CO3	Demonstratethecapabilitytoconductexperiments, as well as to analyze and interpret data
CO4	Abilitytoclassifyacomponenttomeetdesiredneedswithinrealisticconstraintsofsafety.

COURSECONTENTS:

Module-1:[6L]

Review of Basic Concepts of Stress and Strain: Normal stress, Shear stress, Bearing stress, Normalstrain, Shearingstrain; Hooke's law; Poisson's ratio; Stress-straindiagram of ductile and brittle materials; Elastic limit; Ultimate stress; Yielding; Modulus of elasticity; Bulk Modulus: Factor of safety. Beam Statics: Support reactions, concepts of redundancy, axial force, shearforce and bending moment diagrams for concentrated, uniformly distributed, linearly varying load, concentrated moments in simply supported beams, cantilever and overhanging beams Module-2: [9L]

Symmetric Beam Bending: Basic kinematic assumption, moment of inertia, elastic flexureformulae and its application, Bending and shear stress for regular sections, shear centre, centre of of gravity[3L+2T]

Deflection of staticallydeterminate beams: Fundamental concepts: Elastic curve,momentCurvature relationship, governing differential equation, boundary conditions: Direct integrationsolution[3L+1T]

Module-3:[10L]

Analysis of determinate planetrusses: Concepts of redundancy, Analysis by method of joints,

Methodofsections.[3L+1T]

TwoDimensionalStressProblems:Principalstresses,maximumshearstresses,Mohr'scircleof stresses,constructionofMohr'scircle,applications.[4L+2T]

Module-4:[11L]

Introductiontothincylindrical&sphericalshells:Hoopstressandmeridonial-stressandvolumetric changes.[2L+2T]

Torsion: Puretorsion, torsion of circular solids haft and hollows hafts, torsional equation, torsional rigidity, closed coil helical; springs [2L+1T]

Columns: Fundamentals, criteria for stability in equilibrium, column buckling theory, Euler'sloadforcolumnswithdifferentendconditions,limitationsofEuler'stheory—problems,eccentricloadandsecantformulae.[3L+1T]

Text/ ReferenceBooks:

SlNo	Name	Author	Publisher
1	ElementsofStrengthofMaterial	S.P.Timoshenko&D.H.	EWPPvt.Ltd
2	EngineeringMechanicsofSolids	E.P.Popov	PearsonEducation
3	StrengthofMaterials	R.Subramanian	OXFORDUniversity Press
4	StrengthofMaterial	S SBhavikatti	Vikas Publishing House Pvt.Ltd
5	EngineeringMechanicsIby	J.L.Mariam	JohnWilley
6	EngineeringMechanics	I.H.Shames	PHI
7	Fundamentals of Strength of Material	Nag &Chandra	WIE

CO-POmapping

cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	3	3	3	3	-	-	1	-	-	1	-	2	2	3	2
CO2	3	3	3	2	1	-	-	-	-	1	-	3	2	3	2
CO3	2	3	3	3	1	1	-	-	1	1	1	2	2	3	2
CO4	3	2	3	3	1	-	2	-	-	-	-	1	2	3	2

COURSENAME:ENGINEERINGGEOLOGY COURSECODE:CE304 CONTACT:2:0:0

TOTAL CONTACT HOURS: 24HRS

CREDITS:3

Prerequisites: BasicknowledgeofGeography&EarthScience

CourseObjective:

Tomakethestudentsknowledgeabletounderstand,applyandexploreGeologicalparameters,Rockandothermaterialsandactivityrelatedtoearthscience.

CourseOutcome:

CO1	StudentswillhaveknowledgeaboutEngineeringpropertiesofRocksandtheir Minerals.
CO2	StudentwillbeappraisedaboutDam,reservoir,tunnel
CO3	StudentwillunderstandaboutEarthquakephenomena.
CO4	Student willabletocarryout Physicalexploration
CO5	Studentwillabletoestimatevariousgeologicalparametersbyuseofmoderntools&techni
	ques

COURSECONTENTS:

Module-1:[2L+1T]

GeologyanditsimportanceinCivilEngineering

Module-2:[2L+1T]

Mineralogy: Definition, internal and external structure of minerals, Classification and physical properties of minerals.

Module-3:[2L+1T]

Classification of rocks:

- a) Igneousrocks:Origin,modeofoccurrence,forms&texture,classificationandengineeringim portance.
- b) Sedimentaryrocks:Processofsedimentation, classificationandengineeringimportance.
- $c)\ Metamorphic rocks: Agents and types of metamorphism, classification and engineering importance.$

Module-4:[2L+1T]

Weathering of rocks: Agents and kinds of weathering, soil formation & classification based onorigin.

Module-5:[2L+1T]

Geologicalworkofrivers: Originand stages in the system, erosion, transportation and deposition.

Module-6:[2L+1T]

Structural geology: Introduction to structural elements of rocks, dip & strike, definition, description, classification of folds, faults and joints, importance of geological structures in Civil Engineering.

Module-7:[2L+1T]

Earthquakesandseismichazards: Causesandeffects, seismicwavesandseismographs, Mercel li's intensity scale and Richter's scale of magnitude

Module-8:[2L+1T]

Engineeringpropertiesofrocks:

Porosity, permeability, compressive strength, tensile strength and abrasive resistance

Module-9:[2L+1T]

Rocks as construction materials: Qualities required for building and ornamental stones, foundations, concrete aggregate, railway ballast, road metal, pavement, flooring and roofing

Module-10:[2L+1T]

Geophysicalexploration: MethodsofGeophysicalExploration,

electricalresistivitymethodfield procedure –sounding and profiling, electrode configuration, interpretation of resistivitydata.GeophysicalsurveysingroundwaterandotherCivilEngg.Projects.

Module-11:[2L+1T]

AppliedGeology: Surfaceandsubsurfacegeological and geophysical investigations in major Civil Engg. Projects. Geological studies of Dams and reservoir sites, Geological studies for selection of tunnels and underground excavations.

Module-12:[2L+1T]

Landslides: Typesoflandslides, causes, effects and prevention of landslides

Text/ReferenceBooks:

Slno	Name	Author	Publisher			
1	Engineering and GeneralGeology	ParvinSingh	KatsonhouseDelhi1 987			
2	Engineering Geology for CivilEngineers	D.VenkatReddy	Oxford,IBH,1995.			
3	Principlesofpetrology	Tyrell	Asia, Bombay			
4	StructuralGeology	MarlandP.Billings	WileyeasternPre ntice-Hall,U.S.A.			
5	GroundWater hydrology	ToddD.K.	John Wiley & Sons,Secondedition,1 980.			

cos	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	3	2	1	2	1	-	1	1	1	1	1	2	2	2	-
CO2	3	2	1	2	1	1	1	1	1	1	1	2	2	2	-
CO3	3	2	2	2	2	1	1	1	1	1	1	-	2	2	-
CO4	3	3	3	3	3	-	-	1	_	2	1	1	2	2	-
CO5	3	2	1	3	3	2	1	1	2	2	1	2	2	2	-

COURSE NAME: COMPUTER FUNDAMENTALS AND PROGRAMMING

COURSE CODE: CS(CE) 301

CONTACT: 3:0:0

TOTAL CONTACT HOURS: 36

CREDIT: 3

Prerequisites: Number system, Boolean Algebra

Course Outcome:

CO 1	problemsolving.
CO	DescribethewayofexecutionanddebugprogramsinClanguage.
CO 3	Define, select, and compared a tatypes, loops, functions to solve mathematical and scientific problem.
CO	Understandthedynamicbehavior of memory by the use of pointers.
4 CO	$Design and develop modular programs using control structure, selection structure and file \\.$

Course Contents

Course Contents	C-11-1	04
Module	Syllabus	Conta
		ct
		Hours
1.	History of Computer, Generation of Computer, Classification of Computers,	9
FundamentalsofCompu	Basic structure of Computer System, Primary & Secondary Memory,	
ter	Processing Unit, Input & Output devices.	
	Number System: basic of Binary, Octal, Decimal and Hexadecimal number	
	systems; Representation and interchanging of number in different number	
	systems. Introduction to complements system, Representation of signed and	
	unsigned numbers in singed magnitude singed 1's complement system and	
	signed 2's complement system. Arithmetic– Addition and Subtraction	
	(using 1's complement and 2's complement). Representation of Characters-ASCII	
	Code Basics of Compiler, Interpreter and Assembler Problem solving – Basic	
	concept of Algorithm. Representation of algorithm using flow chart and pseudo	
	code. Some basic examples	
2.	Overview of Procedural vs Structural language; History of C Programming	5
Introductionto CProgra	Language. Variable and Data Types: The C characterse identifiers And	
mming	keywords, data type & sizes, variable names, declaration, statements. Operators	
g	& Expressions: Arithmetic operators, relational operators, logical operators,	
	increment	
	anddecrementoperators,bitwiseoperators,assignmentoperators,conditionaloperat	
	ors, special operators, typeconversion, C expressions, precedence and	
	associativity. Input and Output: Standard input and output, formatted output—	
	print f,formatted input scan f.	
3. Branch and Loop	Branching: Concept of Statement and Blocks in C, Simple if, if -else, nested if-	5
3. Branch and Loop	else and if-else ladder.	3
	Switch Case: break and continue; switch-case, concept of go to and labels	
	Loops - while, for, do while	
4. Program Structures	Function: Basics of Functions, function types, function prototypes, formal and	4
	actual parameter, function calling, functions returning values, functions not	-
	returning values. Recursion and Recursive Function.	
	Storage Class in C: Storage Class-auto, external, static and register storage	
	Storage Class III C. Storage Class-auto, external, static and register storage	

	class, scope rules and life time of variables C pre-processor: Pre-processing directive and macro, parameterized macro.	
5. Array and Pointer	Arrays: One dimensional arrays, Two-dimensional arrays, Passing an array to a function Pointers: Pointers, Pointer and Array, Pointer and functions. Strings: Character array and string, array of strings, Passing a string to a function, String related functions, Pointer and String. Dynamic memory allocation: Malloc, calloc, realloc and free with example.	7
6. Structures, Unions and Enum	Basic of structures, arrays of structures, structures and pointers, bit fields. Basics of union and enum, difference between structure and union.	3
7. File in C	Files handling- opening and closing a file in different mode, formatted and unformatted files, Command line arguments, f open, f close, f get c, f put c, f print f, f scan f function	3
_	Total Contact Hours	36

Textbook:

- $1.\,By ron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill$
- 2. KanetkarY.-LetusC,BPBPublication,15thEdition

ReferenceBooks:

1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of

CO-PO/PSO Mapping:

PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	2	2								3	3	3
CO2	3	2	2	2	2								3	3	3
CO3	3	3	3	2	2								3	3	3
CO4	3	3	3	2	2								3	3	3
CO5	3	3	3	2	2								3	3	3

COURSE NAME: COMPOSITE MATERIALS

COURSE CODE: CE305

CONTACT: 3:0:0

TOTAL CONTACT HOURS: 36

CREDIT: 3

Prerequisite: Engineering Materials

Course Outcomes:

CO1: Know the structure and basic properties of composite and nano-composite materials.

CO2: Explore and understand the several methods of composite fabrication.

CO3: Predict the characteristics and performance of composite materials.

CO4: Apply varying composite materials in automotive, aerospace and other applications.

Course Contents

Module No.	Syllabus	Contact Hrs.
1	Introduction to composites: Definition and applications of composite materials, Fibers-glass, carbon, ceramic and aramid fibers; Matricespolymer, graphite, ceramic and metal matrices; characteristics of fibers and matrices. Lamina-assumptions, macroscopic viewpoint, generalized Hookes law, reduction of homogeneous orthotropic lamina, isotropic limit case, orthotropic stiffness matrix, commercial material properties, rule of mixtures, transformation matrix, transformed stiffness.	10
2	Characterization of Composites: Basic assumptions of laminated anisotropic plates, symmetric laminates, angle ply laminates, crossply laminates, laminate structural moduli, evaluation of lamina properties, determination of lamina stresses, maximum stress and strain criteria, von Mises Yield criterion for isotropic materials, generalized Hill's criterion for anisotropic materials, Tsai-Hill's criterion for composites, prediction of laminate failure, thermal analysis of composite laminates	10
3	Performance Analysis of Composites: Analysis of laminated platesequilibrium equations of motion, energy formulation, static bending analysis, buckling analysis, free vibrations, natural frequencies	8
4	Fabrication and application of Composites: Manufacturing of composite materials, bag molding, compression molding, pultrusion, filament welding, other manufacturing processes, Industrial Application of Composite Materials	8

Text Books:

- 1. Composite materials, K.K. Chawala, 2nd ed., (1987) Springer-Verlag, New York.
- 2. Nanocomposite Science and Technology, P. M. Ajayan, L. S. Schadler, P. V. Braun, (2003), Wiley-VCH Verlag GmbH Co. KgaA, Weinheim.
- 3. Mechanics and Analysis of Composite Materials, V.V. Vasiliev and E.V. Morozov, (2001), Elsevier Science Ltd, The Boulevard, Kidlington, Oxford OX5Lgb, UK.
- 4. Ceramic matrix composites, K.K. Chawala, 1st ed., (1993) Chapman & Hall, London

CO-PO/PSO Mapping:

COs	PO	PSO	PSO	PSO											
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	1	-	-	-	-	-	1	-	-	2	-	2
CO2	2	-	1	2	1	-	-	1	-	1	2	1	2	-	2
CO3	2	2	2	1	1	1	-	-	-	1	1	1	2	-	2
CO4	2	1	2	2	1	1	-	1	-	1	2	3	2	-	2

COURSENAME:SURVEYINGLAB

COURSECODE:CE 391

CONTACT:0:0:3 CREDITS:1.50

Prerequisites: Students hould have knowledge about the basic Basic Survey Theory

Course Objective: Student will be able to to function as a member of a team and Havetheabilitytousetechniques, skills, and modern engineering tools necessary for engineering practice.

CourseOutcome:

CO1	Tointerprethorizontalmeasurementwith thehelp of Chain&Compass Surveyinginthefield.								
CO2	ToenumerateaboutPlaneTablesurveying.								
CO3	ToestimateverticalmeasurementwiththehelpofLevelinginthefield.								
CO4	Toapplyindirectmethods&demonstrationofminorinstruments.								
CO5	ToapplyknowledgeaboutTheodolite&Curve.								

LISTOFEXPERIMENT:

Chainsurveying

Preparing index plans, Location sketches, Ranging, Preparation of map, Getting outline of thestructures by enclosing them in triangles/quadrilaterals, Distance between inaccessible points, Obstaclesinchain survey.

Compasssurveying

Measurementofbearings, Preparation of map,

Distancebetweentwoinaccessiblepointsbychainandcompass, Chainandcompass traverse

PlaneTablesurvey

Temporary adjust ments of planetable and Radiation, Intersection, Traversing/Resection methods.

Leveling

Reduced Level calculation with Dumpy and Autolevel for Differential leveling, Profile leveling and plotting the profile,

Contouring:

Direct contouring, Indirect contouring (Method of Interpolation).

 $\textbf{\it The odolite} Traversing by using The odolite. Measurements of Horizontal \& Vertical angles.$

 ${\it Circular Curves-} Setting out of Simple Circular Curves.$

Text/ReferenceBooks:

SIN		
0.	Title	Author
1	Surveying:-Vol-I&II	B.C.Punmia
2	Surveying&Leveling	R.Subramanian(OXFORD)
3	Surveying&LevelingVol-I[Part I&II]	T.P.Kanetkar&Kulkarni
4	Surveying:-Vol-I&II	S.K.Duggal
5	FundamentalofEngineeringSurvey	J.K. Ghosh(StudiumPress,Roorkee)
6	HigherSurveying	Dr.A. M.Chandra
7	Surveying	R.B.Gupta&B.K.Gupta
9	Planeand GeodeticSurveying (Vol-I&II)	DavidClark
10	FundamentalofSurveying	S.K.Roy
11	Surveying	Saikia &Das(PHI)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	1	ı	2	1	1	3	2	2	1	3	3	3
CO2	3	3	3	-	-	2	1	1	3	3	3	1	3	3	3
CO3	3	3	3	1	1	2	1	1	3	2	3	1	3	3	3
CO4	3	3	3	-	1	2	1	1	3	3	3	2	3	2	3
CO5	3	3	3	-	1	2	1	1	3	2	3	2	3	3	3

COURSE NAME: ENGINEERING GEOLOGY LAB

COURSECODE:CE392

CONTACT:0:0:3 CREDITS:1.5

Prerequisites: StudentshouldhavetheknowledgeaboutEngineeringgeologytheory.

CourseObjective:

Tomakethestudentscapableto identifyand studypropertiesofrockandminerals. They also should be abletouse modernto ols linemic roscope.

CourseOutcome:

CO1	Studentshouldacquireknowledgeaboutengg. Propertiesofrocksandtheirminerals.
CO2	Studentshouldbeabletoidentifyrocksandminerals
CO3	Studentshouldbeabletousemoderntoolslivemicroscopetoexploresamples.
CO4	Studentshouldbeabletointerpretmap.

LISTOFEXPERIMENT:

Identification of Rocks and Minerals [Hand Specime ns] Identification of Rocks and Minerals [Hand Specimens]

Study of Geological maps, interpretation of geological structures Thickness problems, Borehole problems

Text/ReferenceBooks:

Slno	Name	Author	Publisher
1	Engineering and GeneralGeology	ParvinSingh	KatsonpublishinghouseDelhi1987
2	Engineering Geology for CivilEngineers	D.VenkatReddy	Oxford,IBH,1995.
3	Principlesofpetrology	Tyrell	Asia,Bombay
4	StructuralGeology	Marland	WileyeasternPrentice
		P.Billings	-Hall,U.S.A.
5	GroundWater hydrology	ToddD.K.	John Wiley & Sons,
			Secondedition,1980.

CO	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PS O2	PS 03
CO1	3	2	1	2	1	1	1	1	1	1	1	1	2	2	-
CO2	3	2	2	3	2	1	2	ı	1	1	-	1	2	2	-
CO3	2	2	1	3	3	2	-	1	1	1	1	1	2	2	-
CO4	2	2	2	1	1	3	1	1	-	1	-	1	2	2	-

COURSENAME: COMPUTER FUNDAMENTALS AND PROGRAMMING LAB

COURSECODE:CS(CE)391

CONTACT:0:0:3 CREDITS: 1.5

Prerequisites: Number system, Boolean Algebra

Course Outcomes (COs):

After completion of the course students would be able to,

CO1: Understand and propose appropriate command or function in the running system or developing program for engineering and mathematical problems depending on the platform used even in a changed environment leading to their lifelong learning.

CO2: Identify and propose appropriate data type, arithmetic operators, input/output functions and also conditional statements in designing effective programs to solve complex engineering problem using modern tools.

CO3: Design and develop effective programs for engineering and mathematical problems using iterative statements as well as recursive functions using modular programming approach possibly as a team maintaining proper ethics of collaboration.

CO4: Explain and organize data in arrays, strings and structures and manipulate them through programs and also define pointers of different types and use them in defining self-referential structures and also to construct and use files for reading and writing to and from leading to solution of engineering and mathematical problem.

CO5: Prepare laboratory reports on interpretation of experimental results and analyse it for validating the same maintaining proper ethics of collaboration.

CourseContent:

Module-1: Familiarization with some basic commands of DOS and Linux. File handling andDirectory structures, file permissions, creating and editing simple C program in different editorand IDE,compilationand executionofCprogram.Introductionto Codeblock.

Module-2: Problembasedon

- a) Basicdatatypes
- b) Differentarithmeticoperators.
- c) Printf()andscanf()functions.

Module-3: Problembased on conditional statements using

- a) if-elsestatements
- b) differentrelational operators
- c) differentlogical operators

Module-4: Problembasedon

- a) **for** loop
- b) whileloop
- c) do-whileloop

Module-5: Problembasedon

- a) Howto writeamenu drivenprogramusingswitch-case statement
- b) Howtowriteafunctionandpassingvaluestoafunction
- c) Howtowritea recursivefunction.

Module-6: Problembasedon

- a) Howtousearray(bothI-Dand2-D).
- b) Howtopassanarraytoafunction.

Module-7: Problembasedon manipulation of strings in different way.

Module-8: Problembasedon

a) How tohandlecompound variables

- $1. \quad ByronGottfried, Schaum's Outline of Programming with C, McGraw-Hill$
- $2. \quad Kanetkar Y.- Let us C, BPB Publication, 15^{th} Edition$

ReferenceBooks:

- $\textbf{1.} \quad Brian W. Kernighan and Dennis M. Ritchie, The CProgramming Language, Prentice Hallof India and Programming Language,$
- 2. KRVenugopal&S RPrasad– MASTERINGC, TMH, 2nd Edition

CO-PO/PSOMapping:

CO	PO	PO2	PO	PSO	PSO	PSO									
PO	1		3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3								3	3	3
CO2	3	3	2	3	3								3	3	3
CO3	3	3	3	3	3								3	3	3
CO4	3	3	3	3	3								3	3	3
CO5	3	3	3	3	3								3	3	3

COURSENAME:BUILDINGPLANNINGANDDRAWING LAB

COURSECODE:CE393

CONTACT:0:0:2 CREDITS:1.0

Prerequisites:Studentshouldhaveknowledgeaboutbuilding materialsandconstructionandalso mathematics

CourseObjective: The objective of this course is to make studentable to Learn to sketch and take field dimensions and to taked at an advantage of the course of the cour

CourseOutcome:

CO1Preparesimplelayoutofbuildings.

CO2Produceworkingdrawingsfor individual components likedoors and window setc.

CO3Developlinediagram, buildingsection, elevation, keyplanandsectional elevation.

CO4Illustratehanddraftinganypartsofabuildingandimplementtheregulationsfor layoutofplan.

LISTOFEXPERIMENT:

<u>Foundations-</u>Spreadfoundationforwallsandcolumns;Footing foraRCCcolumn,raftandpilefoundations <u>Doorsand Windows</u>-Glazed andpaneled doorsofstandardsizes;Glazed and paneled windowsofstandardsizes;specialwindowsandventilators

<u>Stairs-</u> Proportioning and design of a dog-legged, open well RCC stair case for an office / Residentialbuilding; Details of reinforcements for RCC stair cases; Plan and elevation of straight run, quarter turn,dog-leggedandopenwellstaircases.

Roofs-Typesofslopingroof,lean-toroofs,RCCroofwithdetailsofreinforcements

Trusses-KingpostandQueenposttrusses.

<u>Functional Design of Buildings</u>-To draw the line diagram, plan, elevation and section of thefollowing: Residential Buildings (flat & pitched roofs), Office Buildings (flat roof), School.Thedesignsmustshowpositionsofvariouscomponentsincluding liftwellandtheirsizes.Introductiontodrawingbyusingsoftwarepackage.

Text/ReferenceBooks:

SlNo	Title	Author
1	PrinciplesofBuildingDrawing	Shah&Kale
2	TextBookofBuildingConstruction	Sharma& Kaul
3	BuildingConstruction	BCPunmia
4	Civilengineeringdrawing	M.Chakrabory

CO	PO1	PO	PO3l	PO4P)5PO	6PO7I	PO8PO)9PO 1	PO1P	PO1	PS	PS	PSO	2	01
			2							01	O2		3		
CO1	3	2	-	1	2	-	-	-	1	-	-	1	2	2	-
CO2	3	2	-	1	2	-	-	-	1	-	-	1	2	2	-
CO3	3	2	-	1	2	-	-	-	1	-	-	1	2	2	-
CO4	3	2	-	1	2	-	-	-	1	-	-	1	2	2	-

COURSENAME:LIFE SKILL COURSECODE:HU(CE)391 CONTACT:0:0:1 CREDITS:0.5

Pre-requisites: Basic(10+2)

Course Outcome:

CO1: It will equip the student to handle workplace interpersonal communication in an effective manner.

CO2: To enable students with strong oral and written interpersonal communication skills.

CO3: To prepare students to critically analyze workplace situations and take appropriate decisions.

CO4: To make students campus ready through proper behavioral and interpersonal grooming.

CO5: Integration of enhanced skill set to design and frame team based Project Report and Presentation.

MODULE I – INTERPERSONAL COMMUNICATION

- 1. The skills of InterpersonalCommunication.
- 2. Gender/Culture Neutrality.
- 3. Rate of Speech, Pausing, Pitch Variation and Tone.

MODULE II- INTERPERSONAL COMMUNICATION BASED ON WORKPLACE COMMUNICATION

- 4. Workplace Communication.
- 5. Modes of Communication (Telephone, Conference Call, Team Huddle, Public Relation etc.)
- 6. Communication with Clients, Customers, Suppliers etc.
- 7. Organizing/Participating in Business Meeting.
- 8. Note Taking.
- 9.Agenda.
- 10. Minutes.

MODULE III - BUSINESS ETIQUETTE AND CORPORATE LIFE

- 11. Presenting oneself in the Business Environment.
- 12. Corporate Dressing and Mannerism.
- 13. Table Etiquette (Corporate Acculturation, Office parties, Client/Customer invitations etc.)
- 14. E-mail Etiquette.
- 15. Activity based Case Study.

MODULE IV - TEAM WORK: : CORPORATE BUSINESS MEETING

- 16. Team based Brainstorming.
- 17. Documentation and Scripting.
- 18. People and Time Management
- 19. Advertisement Review: Feedback and Analysis

List of Reference:

- 1.Interpersonal Communication, Peter Hartley, Routledge, 1993.
- **2.** Workplace Vagabonds: Career and Community in Changing Worlds of Work, Christina Garsten, Palgrave Macmillan, 2008.
- 3. Transnational Business Cultures Life and Work in a Multinational Corporation, Fiona Moore, Ashgate, 2005.
- 4. Global Business Etiquette: A Guide to International Communication and Customs, Jeanette S. Martin and Lillian H. Chaney, Praeger Publishers, 2006.
- 5. Making Teams Work: 24 Lessons for Working Together Successfully, Michael Maginn,

McGraw-Hill, 2004.

6. Corporate Communications: Convention, Complexity, and Critique, Lars Thøger Christensen, Mette Morsing and George Cheney, SAGE Publications Ltd., 2008.

7. The Business Meetings Sourcebook: A Practical Guide to Better Meetings and Shared Decision Making, Eli Mina, AMACOM, 2002.

8. Moving Images: Making Movies, Understanding Media, Carl Casinghino, Delmar, 2011.

CO-PO Mapping

COs \POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	-	-	-	-	-	-	-	-	-	3	-	2	-	-	2
CO2	-	-	-	-	-	-	-	-	-	3	-	2	-	-	2
СОЗ	-	-	-	-	-	-	-	-	-	3	-	2	-	-	2
CO4	-	-	-	-	-	-	-	-	-	3	-	2	-	-	2
CO5	-	-	-	-	-	-	-	-	-	3	-	2	-	-	2

2nd Year 4th Semester													
Sl.	Broad Category	Category	Course Code	Course	Н	ours p	er we	eek	Credits				
No.	category	category	Couc	Title	L	T	P	Total					
				A.THEORY									
1	ENGG	Major	CE401	Concrete Technology	3	0	0	3	3				
2	ENGG	Major	CE402	Structural Analysis	4	0	0	4	4				
3	ENGG	Major	CE403	Soil Mechanics	3	0	0	3	3				
4	ENGG	Minor	M(CE)401	Numerical Methods	3	0	0	3	3				
				B.PRACTICAL									
5	ENGG	Major	CE491	Concrete Technology Lab	0	0	3	3	1.5				
6	ENGG	Major	CE492	Soil Mechanics Lab-I	0	0	3	3	1.5				
7	ENGG	Major	CE493	Quantity Surveying, Specifications and Valuation	0	0	2	2	1.0				
8	ENGG	Minor	CS(CE)491	Numerical Methods Lab	0	0	3	3	1.5				
9	ENGG	Internship	CE494	Industrial Training (min 1 weeks)	0	0	2	2	1.0				
10	НИМ	Ability Enhancemen t Course	HU(CE)491	Quantitative Aptitude: Numerical & Logical reasoning	1	0	0	1	0.5				
	Totalof Theory, Practical and Mandatory Activities / Courses 27 20												

^{*&#}x27;Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines.

COURSENAME: CONCRETETECHNOLOGYC **OURSECODE:CE 401 CONTACT:3:0:0 TOTAL CONTACT HOURS: 36 HRSCREDITS:3 Pre requisites:** Studentshouldhaveknowledgeaboutthebuildingmaterialsandconstruction. CourseObjective:Theobjectiveofthiscourseisto produceknowledgetothestudentingredientsofconcrete, specific **CourseOutcome:** Identifythefunctionalroleofingredientsofconcrete CO₁ $Students hould be able to gather knowledge to mix design philosophy {\color{blue}CO3}$ CO₂ Studentwill beabletodifferentiatevarioustypesofcementused for variousspecificpurpose CO₄ Student will be able to apply fundamental knowledge in the freshand hardened properties of concreteCO₅ Studentwill beableto designordinaryandcontrolconcretes, replacement of cement and their specific applications **Coursecontents:** Module-1:[6L] Introduction:- Concrete as a Structural Material, Good Concrete Manufacture 6L ofPortland Cement, Chemical Composition of Cement, Hydration of Cement, HeatofHydration[4L] Module-2:[9L] 9L TypesofCement:—ordinary,Rapidhardening,low-heat,sulphateresisting,Portlandslag, Portland pozzolana, super sulphated cement, white cement .Tests on cementandcementpaste–fineness, consistency, settingtime, soundness, strength.[3L] Water&Aggregates-Classification, Mechanical and Physical Properties, Deletarious Substances, Alkali-AggregateReaction, SieveAnalysis, GradingCurves, Fineness modules, Grading Requirements. Testing of Aggregates – Flakiness, Elongation Tests, Aggregate Crushing Value, Ten Percent Fines Value, ImpactmValue, Abrasian Value, Quality of Water – Mixing Water, Curing Water, HarmfulContents.[3L]

Module-3:[11L]

11L

<u>Properties of Fresh Concrete</u>—Workability, Factors Affecting Workability, Slump Test Compacting Factor Test, Flow Table Test, Segregation, Bleeding, Setting Time, <u>Mixing and Vibration of Concrete, Mixers and Vibrators, curing, Methods, Maturity.</u> [3L]

<u>Strength & durability of Concrete</u>—Water/Cement ratio, Gel/Space ratio, Strength in Tension, Compression, Effect of Age on Strength, Relation between Compressive and Tensile Strength, Fatigue Strength, Stress Strain Relation and Modules of Elasticity, Poisson's Ratio, Shrinkage and Creep, Compression Test on Cubes,

Cylinders, Non-Destructive Tests. [3L]

Module-4:[10L]

10L

<u>Permeability of concrete</u>, Chloride & Sulphate attack on concrete, carbonation of concrete [2L]

Admixtures – different types (chemical and mineral), effects, uses, Retarders and Super plasticizers. Mix Design by I.S. 10262(2009) Code method. [4L]

Special concrete: Light-weight, Polymer and Fiber-reinforced concrete. [2L]

Text/ReferenceBooks:

SLNO	NAME	Author	publisher
1	ConcreteTechnology	Neville	PearsonEducation
2	ConcreteTechnology	M.S.Shetty	S.Chand
3	ConcreteTechnology	A.R.Santakumar	OXFORDUniversityPress
4	ConcreteTechnology	M.L.Gambhir	TataMcGrawHill
5	TextbookofConcrete	P.D.Kulkarni	TataMcGrawHill
	Technology		

CO	POF	POPO	POP	OPO	6 PO 7	7PO8	PO9I	PO1P	O1P	O1PS	SOPS	OPS	01	2	3
		4	5	0	1					2	1	2	3		
CO1	3	2	3	3	-	-	2	-	-	-	1	3	2	2	-
CO2	3	3	3	2	3	1	2	-	-	1	1	2	2	2	-
CO3	3	1	2	1	3	-	-	1	-	1	-	1	2	2	-
CO4	3	-	2	-	3	2	2	-	-	-	-	2	2	2	-
CO5	3	3	-	2	2	2	3	-	1	1	-	2	2	2	-

COURSENAME:STRUCTURALANALYSISC

OURSECODE:CE 402

CONTACT:4:0:0

TOTAL CONTACT HOURS: 48

HRSCREDITS:4

Pre requisites: Students must have knowledge in engineering mechanics, solving of free bodydiagrams and application of different structural aspects of materials in any type of structures like support reactions, bending moments, stresses, torsion etc.

CourseObjective: Toprovideknowledgeaboutdeterminateandindeterminatestructuresandhowto calculate degreeofindeterminacyofa structure,applicationsand analysisofdeterminate and indeterminatestructuresinvariousaspects.

CourseOutcome:

CO1.

Learnaboutdeterminateandindeterminatestructures and determination of degree of static and kinematic indet erminacy for any type of structures.

CO2. Analysis of any structure by strain energy method.

CO3. Analysis of determinate and indeterminate structures by different methods.

Coursecontents:

Module-1:[3L] Determination of stability of any type of structure, Determinate and Indeterminate structures, Degree of indeterminacy for different types of structures: Beams, Frames, Trusses.	3L
Module-2:[6L] Analysisofdeterminatestructures:Portalframes,arches.	6L
Module-3:[6L] Strain energy: Due to axial load, bending and shear, Torsion; Castigliano's theorems, theoremof minimum potential energy, Muller Breslau Principle, principle of virtual work, Maxwell'stheoremofreciprocaldeflection, Betti's law	6L
Module-4:[6L] Deflectionofdeterminatestructures: MomentareaandConjugatebeammethod,Energymethods,Un itloadmethodfor beams,Deflectionoftrussesandsimpleportalframes	6L
Module-5:[6L] Influencelinediagrams: Statically determinate beams and trusses under series of concentrated and uniformly distributed rolling loads, criteria formaximum and absolute maximum moments and shears.	6L
Module-6:[3L] AnalysisofstaticallyIndeterminatebeams: Theoremofthreemoments. EnergyMethod, Force Method, Analysisoftwohingedarch.	3L
MODULE -7:[6L] Analysis of statically indeterminate structures: Moment distribution method, SlopeDeflectionMethod, Approximatemethodofanalysis of structures-portal and cantilever method.	6L

Slno	Name	Author	Publishers				
1	Engineering Mechanics of Solids	ByE.P.Popov	PearsonEducation				
2	BasicstructuralAnalysis	C.S.Reddy	ТМН				
3	Statically indeterminate structures	C.K.Wang	McGraw-Hill				
4	StructuralAnalysis (Vol I&VolII)	SSBhavikatti	Vikas PublishingHouse Pvt.Ltd				
5	StructuralAnalysis	Ramammurtham					
5	Structures	Schodek&M.Bechhold	PearsonEducation				

CO	PO1 PO2 PO3		PO	PO5	PO	PO7I	PO8 P	O9 P0	D1PO1	PO1	PSOP	SOPS	04			
					6	0	1			2	1	2	3			
CO1	3	3	3	2	-	1	2	1	2	3	3	2	2	2	-	
CO2	3	3	3	3	1	2	1	1	2	1	2	2	2	2	-	
CO3	3	3	3	2	2	2	1	2	3	3	2	2	2	2	-	

COURSE NAME: SOIL MECHANICS

COURSECODE:CE 403

CONTACT:3:0:0

TOTAL CONTACT HOURS: 36

HRSCREDITS:3

Prerequisites: Student shouldhaveknowledgeaboutthebasicofstrengthofmaterials, physics and chemistry

CourseObjective:Toprovidestudentswithbasicunderstandingofphysicalandmechanical properties of soil, together with knowledge of basic engineering procedures toidentify factors controlling soil behavior and methods to determine soil properties. Studentswillacquirebasic knowledgeinengineeringdesignofgeotechnicalsystems

CourseOutcome:

CO1	Identifythefundamentaldifferences
COI	inengineeringbehaviorbetweencohesiveandcohesionless soils
CO2	Computethegroundwater seepageanddistributionofgroundwater pressure.
CO3	Calculatetheappliedstress beneaththegroundsurface.
CO4	Demonstratethatyouknowthefundamentaldifferenceinthestrengtha nddeformationcharacteristicsofcohesive andcohesionlesssoils.
CO5	A realize of calder all the contempolators determine the action of hearth and deferment.

Analyzefieldandlaboratorydatatodeterminethestrengthanddeformati onpropertiesofcohesive andcohesionless soils.

CO6 Determinesettlementsduetoconsolidationofsoil

Coursecontents:

Coursecontents:	
Module-I:[4L+1T]	5L
Origin & formation of Soil:-Types, Typical Indian Soil, Fundamental of	
SoilStructure,ClayMineralogy.[2L]	
SoilasaThreePhaseSystem:-Weight-	
VolumeRelationship, Measurement of Physical Properties of Soil: Insitu Density, Moistur	
eContent,SpecificGravity,Relative Density.[2L+1T]	
Module-II:[6L+1T]	
ParticleSizeDistribution:-BySieving,SedimentationAnalysis.[2L]	7 L
Index Properties of Soil: - Attarbergs Limits-	
Determination of Index Properties of Soil by Casagrandes Apparatus, Cone	
Penetrometer,SoilIndices.[2L]	
SoilClassification:-	
AsperUnifiedClassificationSystem,AsperISCodeRecommendation, AASHTO	
Classification, FieldIdentification of Soil, ConsistencyofSoil.[2L+1T]	
Module-III:[6L+3T]	
Soil Moisture: Darcy, s Law, Capillarity in Soil, Permeability, Determination	9L
ofCoefficientofPermeabilityofSoilinLaboratory,	
PermeabilityforStratifiedDeposits.[2L+1T]	
EffectiveStressPrinciples:-	
DefinitionofEffectiveStress,EstimationofEffectivePressure Due	
todifferentconditions[2L+1T]	
Two Dimensional Flow Through Soil :- Laplace's Equations, Flow nets, Flow	
Through Earthen Dam, estimation of Seepage, Uplift due to Seepage, Design of	
Fillers,	
Critical Hydraulic Gradient, Quick Sand condition[2L+1T]	
•	

Module-IV:[4L+2T]

Stress Distribution In Soil: Bousinesqs & Westergaads Assumption & Formula for Determination of stress due to Point Loads, Stress Beneath Line, Strip & Uniformly Loaded Circular - Pressure Bulbs, Newmarks charts- Use For Determination of Stress due to Arbitrarily Loaded Areas, Contact Stress distribution for various types of Loading & on Different Types of Soils. [2L+1T]

6L

Compaction of Soil :- Principles of Compaction, IS Light & Heavy Compaction Test, Field Compaction Equipments, Various methods of field Compaction Control. [2L+1T]

Module-V: [6L+3T]

Compressibility & Consolidation of Soil: - Terzaghi's Theory of One Dimensional Consolidation, Compressibility Characteristics of Soils, Compression Index, Coefficient of Compressibility & Volume change, Coefficient of Consolidation, Degree & rate of Consolidation, Consolidemeter & Laboratory One Dimensional Consolidation Test as per latest IS Code, Determination of Consolidation Parameters, Secondary Consolidation. [4L+2T]

9L

<u>Shear Strength of Soil:</u> Basic Concept of Shear Resistance & Shear Strength of Soil, Mohr-Columb's Theory, Laboratory Determination of Soil Shear Parameter-Direct

Shear, Tri-axial Test, Unconfined Compression, Vane Shear Test, Sensitivity & thixotropy of clay. [2L+1T]

Text/ReferenceBooks:

Sl no	Name	Author	Publishers
1	Text book of Soil Mechanics & Foundation Engineering		CBS Publisher's & Distributors
2	Principles of Foundation Engineering	B.M. Das	Thomson Book
3	Principles of Geotechnical Engineering	B. M. Das	Thomson Book Store
4	Basic & Applied Soil Mechanics	Gopal Ranjan & A.S.R.Rao	Willes EasternLtd
5	Soil Mechanics	Lambe & Whitman	WIE
6	Hand Book of Bureau of Indian Standard	1 IS –1904, 6403, 8009, 2950,	2911 etc

CO	PO	PO2	PO	PO4	PO	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
	1		3		5					0	1	2	1	2	
CO1	3	2	2	1	1	1	1	1	1	1	1	2	3	3	3
CO2	2	2	3	3	2	3	1	1	2	2	2	3	2	3	2
CO3	2	2	3	2	2	1	1	3	2	1	1	2	1	1	1
CO4	3	3	3	3	3	2	1	3	2	1	3	3	2	2	2
CO5	2	3	1	2	1	3	1	2	2	2	2	2	2	2	2
CO6	3	3	3	3	2	2	2	2	3	2	2	3	2	2	2

Course Name: Numerical Methods

Course Code: M(CE) 401 Total Contact Hours: 36

Credit: 3

Prerequisite:

The students to whom this course will be offered must have the concept of (10+2) standard number system, algebra and calculus and basic knowledge of numerical analysis.

Course Objectives:

The purpose of this course is to provide better understanding of the derivation and the use of the numerical methods along with the knowledge of finite precision arithmetic.

Course Outcomes (COs):

On successful completion of the learning sessions of the course, the learner will be able to:

CO	DESCRIPTIONS
CO1	Recall the distinctive principles of numerical analysis and the associated error measures.
CO2	Understand the theoretical workings of numerical techniques.
CO3	Apply numerical methods used to obtain approximate solutions to intractable mathematical problems such as interpolation, the solution of linear and nonlinear equations, and the solution of ordinary and partial differential equations.
CO4	Select appropriate numerical methods to apply to various types of problems in engineering and science in consideration of the mathematical operations involved, accuracy requirements, and available computational resources.

Course Content

MODULE I: Error Analysis and Interpolation (10 Lectures)

Approximation in Numerical Computation: Truncation and rounding errors, Propagation of errors, Fixed and floating-point arithmetic.

Interpolation: Central Difference Operator: Stirling's interpolation formula, Bessel's interpolation formula, Cubic Spline interpolation.

MODULE II: Matrix and Numerical Solution of Linear and Non-linear Equations (16 Lectures)

Matrix: Eigen values and eigen vectors of matrix: Power method.

Numerical Solution of a System of Linear Equations: Gauss elimination method, Tridiagonal matrix algorithm, LU Factorization method, Gauss-Jacobi iterative method, Gauss-Seidel iterative method, Successive over Relaxation (SOR) method.

Solution of Polynomial and Transcendental Equations: Bisection method, Regula-Falsi, Secant Method, Newton-Raphson method, fixed point iteration.

MODULE III: Numerical Solution of Differential Equation

(10 Lectures)

Numerical Solution of Ordinary Differential Equation: Taylor series method, Adams- Bashforth-Moulton method and Milne's Predictor-Corrector methods, finite difference method.

Numerical solution of partial differential equation: Finite Difference method, Crank-Nicolson method.

Project Domains:

- 1. Application of PDE and ODE in Engineering Field.
- 2. Application of numerical methods for the relevant field.
- 3. Mathematical modelling.

Text Books:

- 1. Shishir Gupta &S.Dey, Numerical Methods, Mc. Grawhill Education Pvt. Ltd.
- 2. C.Xavier: C Language and Numerical Methods, New age International Publisher.
- 3. Dutta& Jana: Introductory Numerical Analysis. PHI Learning
- 4. J.B.Scarborough: Numerical Mathematical Analysis.Oxford and IBH Publishing
- 5. Jain, M. K., Iyengar, S. R. K. and Jain, R. K. *Numerical Methods (Problems and Solution)*. New age International Publisher.
- 6. Prasun Nayek: Numerical Analysis, Asian Books

Reference Books:

- 1. Balagurusamy, E. Numerical Methods, Scitech. TMH.
- 2. Dutta, N. Computer Programming & Numerical Analysis, Universities Press.
- 3. Guha, S. and Srivastava, R. Numerical Methods, Oxford Universities Press.
- 4. Shastri, S. S. Numerical Analysis, PHI.
- 5. Mollah, S. A. Numerical Analysis, New Central Book Agency.
- 6. Numerical Methods for Mathematics ,Science&Engg., Mathews, PHI.
- 7. Rao, G. S. Numerical Analysis, New Age International.

CO-PO Mapping:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	PO9	PO	PO	P1	PS	PS	PS
								8		10	11	2	01	O2	03
CO1	3	1	1	-	-	-	-	-	-	-	-	1	2	2	-
CO2	3	2	1	-	-	-	-	-	-	-	-	1	2	2	-
CO3	3	2	2	-	-	-	-	-	-	-	-	1	2	2	-
CO4	3	3	2	3	-	-	-	-	-	-	-	1	2	2	-

COURSE NAME: CONCRETE TECHNOLOGY LAB

COURSECODE: CE491

CONTACT:0:0:3 CREDITS:1.50

Prerequisites: Studentshouldhavethebasicknowledgeaboutconcretetechnologytheory

Course Objective: The objective of this course is to understand the characteristics and behavior of civilengineering materials used in buildings and infrastructure. Students will learn standard principles and procedure to design prepare and/or

test materials such as concrete mix design including field test methods for fresh concrete. Know how to select materials based on their

properties and their proper use for a particular facility under prevailing loads and en vironmental conditions.

CourseOutcome:

- CO1 Identifythefunctionalroleofingredientsofconcrete
- CO2 Applythisknowledgetomixdesignphilosophytoget differentgradeofconcrete
- CO3 Studentshouldbe able totestofdifferentconcretepropertytospecifyqualityofconcreteCO4 Studentshalllearntoworkinateamtoachieve theobjective

LISTOFEXPERIMENT:

 $\underline{\textbf{Testsoncement-}} specific gravity, fineness, soundness, normal consistency, setting time, compressive strength once mentmort ar Cubes.$

Testsonfineaggregate-specificgravity, bulking

sieveanalysis, fineness modulus, moisture content, bulk density, voids and Deleterious materials.

Testsoncoarseaggregate-specificgravity, sieveanalysis, fineness modulus, bulkdensity and voids.

TestsonFreshConcrete: Workability: Slump, Vee-Bee, Compaction factor tests

TestsonFreshConcrete: Workability: Slump, Vee-Bee, Compaction factor tests

<u>Hardened Concrete:</u> Compressive strength on Cubes, Split tensile strength, Static modulus of elasticity, Flexuretests, Nondestructive testing (Reboundhammer & Ultrasonic pulse velocity)

MixDesign-Asper IS10262(2009)method

Text/ReferenceBooks:

SLNO	NAME	Author	publisher
1	ConcreteTechnology	Neville	PearsonEducation
2	ConcreteTechnology	M.S.Shetty	S.Chand
3	ConcreteTechnology	. R.Santakumar	OXFORDUniversityPress
4	ConcreteTechnology	M.L.Gambhir	TataMcGrawHill
5	TextbookofConcrete	P.D.Kulkarni	
	TataMcGrawHillTechnology		

CO	PO1	PO	PO3I	PO4PO)5PO	5 PO7 F	POSPC)9PO1	PO1P	01	PS	PS	PSO	2	01
			2							01	O2		3		
CO1	3	2	2	2	2	-	-	-	1	1	-	1	2	2	-
CO ₂	3	2	2	2	2	1	1	1	1	-	-	1	2	2	-
CO ₃	3	2	2	2	2	1	-	-	1	-	-	1	2	2	-
CO ₄	1	1	1	1	1	-	1	1	3	2	2	1	2	2	-

COURSE NAME: SOIL MECHANICS LAB-

ICOURSECODE:CE 492

CONTACT:0:0:3 CREDITS:1.50

Prerequisites: StudentshouldhavethebasicknowledgeaboutBasicSoilMechanicstheory

CourseObjective:Providecivilengineeringstudentswiththebasicknowledgetocarryoutfieldinvestigationsa ndto indentifysoilsingeotechnicalengineeringpracticeandeducatecivil engineeringstudents inperformingandinterpretationlaboratorytestsfor evaluatingsoilproperty.

CourseOutcome:

CO1:IdentifysoilswithreferencetotheircharacteristicsCO

2: Describe the behavior and effect of water in

soilsCO3:Examinemodes of soil behavior

CO4: Calculate and plots oil strength parameters

CO5:Interpretdifferentmethodsofimprovingsoilstability

LISTOFEXPERIMENT:

- 1. Fieldidentificationofdifferent typesofsoilasperIndianstandards[collectionoffield samplesandidentificationswithout laboratorytesting],determinationofnaturalmoisturecontent.
- 2. Determinationofspecificgravityofi) Cohesionless ii)cohesivesoil
- 3. DeterminationofInsitu densitybycore cuttermethod &sandreplacementmethod.
- 4. Grainsizedistributionofcohessionlesssoilbysieving&fine-grained soilbyhydrometeranalysis.
- 5. Determination of Atterberg's limits (liquid limit, plastic limit&shrinkagelimit).
- 6. Determination of co- efficient of permeability by constant head permeameter (coarse grainedsoil)&variable headpermeameter(finegrainedsoil).
- 7. Determination of compaction characteristics of soil.

Reference

- 1. SoilTestingbyT.W.Lamb(Johnwilley)
- 2. SP-36(Part-I&Part-II)
- 3. MeasurementofEngineeringpropertiesofsoilbyE.SaibabaReddy&K.

Ramasastri.(NewageInternationalpublication.

CO	PO	PO2	PO	PO4	PO	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
	1		3		5					0	1	2	1	2	3
CO1	3	1	2	3	3	2	1	-	1	3	2	2	3	2	3
CO2	3	3	2	2	3	2	1	1	1	2	3	1	3	3	3
CO3	3	2	1	2	1	3	1	2	-	2	1	2	2	2	3
CO4	2	3	2	3	1	1	2	1	2	1	2	3	2	2	2
CO5	2	3	3	2	2	1	1	1	2	1	2	2	2	2	2

COURSENAME: QUANTITYSURVEYING, SPECIFICATIONS AND VALUATION C

OURSECODE:CE493 CONTACT:0:0:2 CREDITS:1.0

Pre requisites: Studentshouldhaveknowledgeaboutbuildingconstruction and material details.

Course Objective: The objective of this course is to give the students basics knowledge of estimating and valuation of civilengine ering works. After completing

thiscoursethestudentswillalsobeableto

analyzetheratesand estimatethe variousconstructionworks

CourseOutcome:

CO1:Studentwillbeabletopreparespecification for

using materials of construction and its items of works.

CO2:Studentwillbeabletoillustrateadetailed

estimationofmaterialconsumptionandabstractsforentireconstructionprojects

CO3: Student will learn how to analyze the rates for different items of work including laborandmaterial.

CO4: Interpret fundamentalconceptsofvaluation

CO5: Students will be able to identify various legal is sues related to construction.

LISTOFEXPERIMENT:

Unit I: Different types of estimates, Concept of items of work, unit of measurement, unit rate ofpayment. Quantity estimate of a single storied building. Bar bending schedule. Details of measurementand calculation of quantities with cost, bill of quantities, abstract of quantities. Quantity estimate ofRoad,Undergroundreservoir,Surfacedrain,Septictank

Unit II: Analysis and schedule of rates for Earthwork, brick flat soling, DPC, PCC and RCC, brickwork, plastering, flooring and Finishing.

Unit III: Specification of materials: Brick, cement, fine and coarse aggregates; Specification of works:PCC, RCC, First class brickwork, cement plastering and pointing, white washing, colour washing, distempering, lime punning, painting and varnishing

Unit IV: Basic concept of Values and cost, gross income, outgoing, net income, scrap value, salvagevalue, market value, Book Value, Sinking fund, capitalized value, Year of purchase, depreciation, obsolescence, deferred income, freehold and leasehold property, Mortgage, rentfixation, valuation table.

Text/ReferenceBooks:

B.N.Datta, Costing, Estimation and Valuation, UBS Publication

S.C.Rangwala, Estimating&Costing(CivilEngg.), Charotar Publication

G.S.Birdie, AtextbookofEstimating&Costing, DhanpatRai&Sons

S. C.Rangwala, ValuationofRealproperties, Charotar Publication

Estimating, Costing, Specification & Valuation In Civil Engineering by M. chakrabory

CO-POmap	ping														
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO11	PO1 2	PSO 1	PSO 2	PSO 3
CO1	3	3	2	2	1	2	1	-	1	-	2	2	2	2	•
CO2	3	3	3	2	-	-	-	-	-	-	1	2	2	2	•
CO3	3	3	3	1	ı	-	ı	ı	1	-	2	2	2	2	•
CO4	3	3	3	2	ı	1	ı	ı	ı	ı	2	2	2	2	•
CO5	3	3	3	2	1	2	-	-	2	2	2	2	2	2	-

COURSENAME: NUMERICALMETHODSLAB

COURSECODE:CS(CE)491

CONTACT:0:0:3 CREDITS:1.50

Prerequisite: Anyintroductorycourseonprogramminglanguage(example.C/Matlab).

CourseObjective: Thepurposeofthis courseis

toprovide basic programming skills for solving the problems in numerical methods.

CourseOutcome(CO):

Onsuccessful completion of the learning sessions of the course, the learner will be able to:

CODES	DESCRIPTIONS
CO1	Understandthe theoreticalworkings ofnumericaltechniqueswiththe helpofC/Matlab
CO2	Executebasiccommandandscriptsinamathematicalprogramminglanguage
CO3	Applytheprogrammingskillstosolvetheproblemsusingmultiplenumerical approaches.
CO4	Analyzeiftheresultsarereasonable,and theninterpretandclearlycommunicatetheresults.

LISTOFEXPERIMENT:

- 1. AssignmentsonNewtonforward/backward,Lagrange'sinterpolation.
- 2. AssignmentsonnumericalintegrationusingTrapezoidalrule,Simpson's 1/3 rule, Weddle's rule.
- 3. Assignments on numerical solution of a system of linear equations using Gauss elimination, Tridiagonalmatrix algorithm, Gauss-Seidel iterations. Successive over Relaxation (SOR)method, LU Factorizationmethod.
- 4. Assignmentsonnumerical solution of Algebraic Equation by Bisection method, Regula-Falsimethod, Secant Method, Newton-Raphson method
- 5. Assignments on ordinary differential equation: Euler's method, Euler's modified method, Runge-Kuttamethods, Taylorseries method and Predictor-Corrector method.
- 6. Assignmentsonnumerical solution of partial differential equation: Finite Difference method, Crank—Nicolson method.

Implementationofnumerical

 $methods on computer through C/C++ and commercial Software Packages: Matlab/Scilab/Labview/Mathematica/N\\ AG(\underbrace{Numerical} Algorithms Group)/Python.$

CO-POMapping:

PC	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	P	P	P	P	P
CO	1									O	О	О	S	S	S
										10	11	12	О	О	О
													1	2	3
CO1	3	2	1	-	-	-	-	-	-	-	-	1	2	2	-
CO2	3	2	2	-	-	-	-	-	-	-	-	1	2	2	-
CO3	3	2	2	-	-	_	-	-	-	-	-	1	2	2	-
CO4	3	3	2	3	_	_	_	_	-	-	-	1	2	2	-

COURSE NAME: INDUSTRIAL TRAINING

COURSE CODE: CE494

CREDIT: 1

Course contents:

Collective Data from 3rd to 4th Semester (Summer/Winter Training during Semester Break & Internship should be done after 3rd Semester or 4th Semester). All related certificates to be collected by the training/internship coordinator(s).

			3rd	Year5 th Semester					
Sl. No.	Broad Category	Category	Course Code	Course Title	Hours per v			veek	Credits
					L	Т	P	Total	
	T			A.THEORY				T	T
1	ENGG	Major	CE501	Structural Design-I	3	0	0	3	3
2	ENGG	Major	CE502	Foundation Engineering	3	0	0	3	3
3	ENGG	Major	CE503	Highway and Transportation Engineering	3	0	0	3	3
4	ENGG	Major	CE504	Environmental Engineering	3	0	0	3	3
5	ENGG	Minor	CE505	Instrumentation & Sensor Technologies for Civil Engineering Applications E. Surveying & Geomatics Application of IOT in civil engineering	4	0	0	4	4
				B.PRACTICAL					
6	ENGG	Major	CE591	Soil Mechanics Lab-II	0	0	3	3	1.5
7	ENGG	Major	CE592	Highway and Transportation Engineering Lab	0	0	3	3	1.5
8	ENGG	Major	CE593	Environmental Engineering Lab	0	0	3	3	1.5
9	PROJECT	Minor	PR591	Minor Project-I	0	0	2	2	1
		Totalof Theory	,Practicalan	dMandatoryActivities/Courses				27	21.5

^{*&#}x27;Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines.

COURSENAME:STRUCTURALDESIGN-

ICOURSECODE: CE501

CONTACT:3:0:0

TOTALCONTACTHOURS:36HRSC

REDITS: 3

Prerequisites: Studentshouldhaveknowledge abouthowtosolveanalysisofstructuralproblem.

CourseObjective:

- 1. Student will be able to perform analysis and design of reinforced concrete members and connections and beable to identify and interpret the appropriate relevant industry design codes.
- 2. To become familiar with professional and contemporary issues in the design and construction of reinforced concrete members.

CourseOutcome:

CO1: Exhibit the knowledge of concrete design philosophies, by working and limit statemethodology

CO2: Designthe structural details of beam and slab

 ${\bf CO3:} Design the structural details of column.\\$

CO4 ::Designthe structuraldetailsoffoundation

CO5:InterpretandusetheI.SCodespecifications

Coursecontents:	
Module-I:[1L+1T]	
Introduction:Principlesofdesignofreinforcedconcretemembers-	2 I
WorkingstressandLimitStatemethodofdesign.	
Module-II:[2L+2T]	4 I
Workingstressmethodofdesign: Basicconceptsand IScodeprovisions(IS:4562000)for	
designagainstbending momentandshearforces -Balanced,underreinforcedandoverreinforced	
beam/slabsections;designofsinglyanddoublyreinforcedsections.	
Module-III:[2L+2T]	4 L
Limitstatemethodofdesign:BasicconceptsandIScodeprovisions(IS:4562000)	
fordesignagainstbendingmomentandshearforces; concepts of bondstress and development length; U	
se of designaidsforreinforced concrete (SP:16).	
Module-IV:[2L+2T]	
Analysis, designand detailing of singly reinforced rectangular,	4I
'T","L"anddoublyreinforcedbeamsectionsbylimitstatemethod.	
Module-V:[2L+2T]	
Designanddetailingofone-wayand two-wayslabpanelsasperIScode provisions	4 I
Module-VI:[2L+2T]	4I
Designand detailing of continuous beams and slabs as per IS code provisions	
Module-VII:[2L+2T]	4 I
Staircases: Types; Designand detailing of reinforced concreted og legged staircase	
Module-VIII:[2L+2T]	4I
Designanddetailingofreinforcedconcreteshortcolumnsofrectangularand	
circular cross sections under axial load. Design of short columns subjected to axial load with	
moments(uniaxialandbiaxialbending)-usingSP16.	
Module-IX:[3L+3T]	6I
Shallow foundations: Types; Design and detailing of reinforced concrete isolated	
square and Rectangular footing for columns as per IS code provisions by limit state method.	
Limit state method should be followed for serial number 4 to 9 as above as per IS 456 - 2000	

Text/ReferenceBooks:

Name	Author	Publishers		
IS: 456- 2000 "Indian Standard for Plain	Bureau of Indian Standard			
and reinforced concrete – code of practice				
SP:16 Design Aid to IS 456				
Reinforced Concrete Design by	Pillai and Menon	TMH		
Reinforced concrete Limit state design	AshokK.Jain,Arun kv	Laxmi publication		
	jain,B.C.Punmia	_		
Reinforced concrete	S.N.Sinha	TMH		
Fundamentals of reinforced concrete	N.C.Sinha and S.K. Roy	S.Chand &Co		
Limit State Design of Reinforced	P. C. Varghese	PHI		
Concrete				
Reinforced Concrete	S. K. Mallick and A. P.	Oxford IBH		
	Gupta			
Reinforced cement Concrete Design	Neelam Sharma	S.K hataria & sons		

CO	POF	O2PO	OPO4	POP(06PO	7PO 8	PO9P	O1PC)1PO	1PSO	PSOP	SO1	3	5	0	
			1		2					1	2	3				
CO1	3	2	3	3	3	3	2	1	1	2	1	3	1	1	3	
CO2	2	2	2	2	1	3	2	2	2	2	2	2	2	2	2	
CO3	2	2	1	2	3	2	1	3	2	2	2	3	2	2	3	
CO4	2	1	2	2	2	2	3	2	2	2	1	2	2	3	2	
COS	2	2	2	3	2	2	2	1	1	2	2	2	2	2	3	

COURSENAME: FOUNDATIONENGINEERINGC

OURSECODE: CE502 CONTACT:3:0:0

TOTALCONTACTHOURS:36HRSC

REDITS: 3

Prerequisites: Studentshouldhaveknowledge aboutbasicofSoilMechanics

CourseObjective:

Application of soil mechanics and other related techniques to design of foundation. Methods and soil exploration; bearing capacity and settlements; shallow and deep foundation; bracingandretainingstructures. Casestudies.

CourseOutcome:

CO1: Describe bearing capacity of soil and settlement analysis of soil.

CO2:Defineearthpressuretheories

CO3: Analysisofslope stability

CO4:Classifypiles&theirloadingcapacityfordeepfoundation.

CO5:DemonstratethefundamentalKnowledgeofSiteinvestigationandsoilexploration

Coursecontents:

Module-1:	
Earth Pressure Theories: -Plastic equilibrium of soil, Earth pressure at rest, Active& passive Earth pressure, Rankin's & Coulombs earth pressure theories, wedgemethod ofanalysis, estimation of earth pressure bygraphical construction (Culmann method).	4L
Module-2:	8L
RetainingWall&sheetpilestructures: Proportionsofretainingwalls, stabilitychecks, can tileverandanchoredsheetpiles, freeearthand fixed earthmethod of analysis of an chored bulkheads, coffer damstructure stypes.	
Module-3:	4L
<u>Stabilityofslopes:</u> Analysisoffiniteand infiniteslopes, Swedish And friction circlemethod, Taylor's stability number, Bishop's method of stability analysis.	
Module-4: Site Investigation & Soil Exploration: Planning of sub-surface explanation, methods, sampling, samples, Insitutests: SPT, SCPT, DCPT, field vanes hear, Plateloadtest.	4L
Module-5:	4L
Shallowfoundations: Safebearingcapacity, Terzaghi's bearingcapacity theory, effect of depth of epth of	42
Module-6:	4L
Settlement analysis of shallow foundation: Immediate and consolidationsettlement, correction for rigidity and dimensional effects, settlement invarious, typesofsoil, IS-1904 and 8009 recommendations, Allowable bearing capacity	

Module-7: 8L

<u>Deep foundations:</u> Pile: Types, load transfer mechanism Determination of loadcarryingcapacities of piles by static and dynamic formulae, Recommendations of IS 2911, Pilegroup: Group efficiency, Negativeskin friction, pile load test.

Text/ReferenceBooks:

Name	Author	Publishers
Principles of Geotechnical	B. M. Das	Thomson Book Store
Engineering		
Text book of Soil Mechanics &	V.N.S. Murthy	CBS Publisher's &
Foundation Engineering		Distributors
Geotechnical Engineering –	Coduto	Pearson Education
Principles and Practice		
Soil Mechanics	Lambe & Whitman	WIE
Basic & Applied Soil Mechanics	Gopal Ranjan & A.S.R.Rao	Willes EasternLtd
SP 36 (Part I)	Rao & Venkatramaiah	University Press
Numerical Problems –		
GeotechnicalEngineering		

CO	POF	O2PO	OPO4	POP	D6PO	7PO 8	PO9I	PO1P	01PO	1PSC	PSO	PSO1	3	5	0
			1		2					1	2	3			
CO1	2	2	2	2	1	1	1	2	3	1	2	3	3	2	3
CO2	2	2	2	3	2	2	1	2	3	1	2	3	3	2	3
CO3	2	2	1	2	1	1	1	1	2	1	1	2	2	2	3
CO4	2	1	1	2	3	2	1	1	2	1	2	2	2	2	2
CO5	3	2	3	2	2	2	2	2	3	2	3	3	3	3	3

COURSE NAME: HIGHWAY AND TRANSPORTATION ENGINEERING

COURSECODE: CE503

CONTACT:3:0:0

TOTALCONTACTHOURS:36HRSC

REDITS: 3

Prerequisites: KnowledgeonIRCcodes, LoadingpatternbaseonIRC, Trafficfeaturesetc.

CourseObjective:

Introduction of IRC

loadingIntroduction of Traffic

Engineering. Utility of study of trafficma

nagement.

Basic concept of Rail way track, rail way governing body and engineering fundamentals.

CourseOutcome:

CO1:Understanding oftrafficloading pattern

CO2: Understanding of trafficengineering and traffic management

analysis, Transportation Demand Analysis, Preparation of Project Report.

CO3:Basicconceptofrailwayengineering

CO4:UnderstandingofLoadingPatternofBridge

CO5:KnowledgeaboutIRCGuidelines

Coursecontents:

Module-I: INTRODUCTIONOFDIFFERENTTYPESOFLOADINGFORBRIDGEDESIGNBAS 6L **ED ONIRCGUIDELINES:** Definition and Basic Forms, Component of bridge, classification of bridge, shorthistory of bridged evelopment. I.R. CLoads. Analysis of IRCLoads, Impa ctfactors.other loadstobe considered, ImportanceofHydraulicfactorsinBridgeDesign. Module-II: 10L TRAFFICENGINEERING: Traffic Engineering: Road user and vehicle characteristics; Traffic flow characteristics -Volume, Speed, Headway, Concentration Delay:Traffic and surveys&studies;Trafficestimation;Statisticalapplicationsintrafficengineeringanalysis;Parkin g;Road intersections Basic traffic conflicts, classification of at-grade intersections, channelization, rotaries, traffic signals, signs and marking; Road Safety; Traffic System Management. **Module-III:** 6L TRANSPORTATIONMANAGEMENT: FunctionsofIRC, CentralRoadResearchInstitute.MotorVehicleAct, JayakarcommitteeRecommen dations, Saturation system, Population unit and productivity units. Highway cost

Module-IV: INTRODUCTIONOFRAILWAYENGINEERING:

14L

BasicTerminologiesofRailwayEngineering,DifferenttypesofRailwayplanning,Classification of Indian Railways, Classification of Indian Railways based on speed criteria,UndertakingsUnderMinistryOfRailways,InitiativesByIndianRailwaysForDevelopment OfTourismSector,GlobalTrainsOfTomorrow,ConstructionAndRenewalOfTrack,Development ofHighAnd SuperHighSpeeds,ModernizationOfTrack ForHighSpeeds, AdministrationOfIndianRailways,RailwayExpenses,RatesandFares.

Text/l	Referenc	eBooks:

Name	Author	Publisher
Highway Engineering	Khanna & Justo	Nemchand & Brothers,
		Roorkee
Principles of	P.Chakroborty & A Das	PHI
Transportation	-	
Engineering		
IS Specifications on	Bureau of Indian Standard	-
Concrete Aggregate &		
Bitumen		
Relevant Latest IRC	-	-
Codes (IRC-37-2001, IRC		
58-2002, IRC 73 – 1980,		
IRC 86 – 1983, IRC 106 –		
1990, IRC 64 – 1990, IRC		
15 – 2002 Indian Road		
Congress		

CO	PO	PO2	PO	PO4]	PO P	O6PC	7PO8	PO9F	O1PO	D1PO	1PSO	PSOP	SO1	3	
			5	0	1					2	1	2	3		
CO1	3	3	3	2	3	1	1	1	3	3	3	3	3	3	3
CO2	3	3	3	2	2	2	1	1	3	2	3	2	3	2	3
CO3	3	1	2	1	2	3	2	2	1	3	3	3	3	3	3
CO4	3	2	2	1	2	3	2	3	2	3	3	3	2	3	2
CO5	3	2	2	3	3	3	3	3	3	2	3	3	3	3	3

COURSE NAME: ENVIRONMENTAL ENGINEERING

COURSE CODE:CE504

CONTACT: 3:0:0

TOTAL CONTACT HOURS: 36 HRS

CREDITS: 3

Pre requisites:

The basic concept of hydraulics with knowledge of pressure, loss etc calculation. Fundamentals of chemistry and preliminary knowledge of Quantityestimation.

Course Objective:

Students will gain knowledge on water demand and source of water they will acquire knowledge on water quality and its parameters. To be familiar with water distribution Network and water treatment procedures and methodology. Students will be familiar with sewage and Drainage and will be able to design sewer. Students will be acquainted with wastewater characteristics, pollution and wastewater treatment.

Course Outcome:

CO1: Students will be able to understand key current environmental problems like level of pollution

CO2: Be able to identify and value the effect of the pollutants on the environment: atmosphere, water and soil.

CO3: Be able to analyze an industrial activity and identify the environmental problems.

CO4: Be able to plan strategies to control, reduce and monitor pollution.

CO5: Be able to select the most appropriate technique to purify and/or control the emission of pollutants.

CO6: Be able to apply the basis of an Environmental Management System (EMS) to an industrial activity

Course contents:

Madula 1 Water demands, Water demands Demands demands Variations in demands	
Module - 1. Water demands: - Water demands; Per capita demand; Variations in demand;	3L
Factors affecting demand; Design period; Population forecasting	
Module - 2. Sources of water: Surface water sources; ground water sources.	3L
Module - 3. Water Quality: Impurities in water; Water quality parameters; Standards for potable water.	3L
Module-4. Conveyance of water: Hydraulic design of pressure pipes	3L
Module -5. Water Treatment: Typical flow chart for surface and ground water treatments; Aeration, Plain sedimentation, Sedimentation with coagulation, Water Softening, Filtration, Disinfection.	6l
Module -6. Water Distribution: Analysis of distribution network; Storage and distribution reservoirs; Capacity of reservoirs.	6L
Module – 7. Sewage and Drainage: Definition of Common Terms, Quantity estimation for sanitary sewage and storm sewage.	3L
Module – 8. Sewer Design: Hydraulic design of sewers, Partial flow diagrams and Nomograms	3L

R23-BTech-CE

Module – 9. Wastewater Characteristics & Water pollution: Physical, chemical and biolog characteristics, DO, BODand COD, pollution characteristics of typical industries, suggested treatment	gical 3L
Module-10.WastewaterTreatment:Typicalflowchartforwastewatertreatment;Primary	3L
Treatments; Secondary Treatments: Activated Sludge Process, Trickling Filter Process, Septic	

Tank.

Text / Reference Books:

Slno	Name	Author	Publishers
1	EnvironmentalEngineering	S.K .Garg,	Khanna Publishers
2	Water Supply, WasteDisposal and EnvironmentalPollution Engineering	A.K.Chatterjee	Khanna Publishers.
3	EnvironmentalEngineering, Vol.II	P. N. Modi	-
4	EnvironmentalModelling	Rajagopalan	Oxford University Press.
5	EnvironmentalEngineering	P. V. Rowe	TMH

CO-PO mapping

СО	PO	PO2	PO	PO4	PO	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
	1		3		5					0	1	2	1	2	3
CO1	1	2	3	1	1	3	3	3	1	1	1	2	1	2	3
CO2	2	2	3	2	1	3	3	2	1	1	1	2	1	2	3
CO3	3	3	3	3	2	2	3	2	3	3	3	2	3	3	3
CO4	3	3	3	3	3	2	3	2	3	2	3	2	3	3	2
CO5	3	3	3	3	3	1	3	2	2	3	3	1	3	3	3
CO6	3	3	3	2	3	3	2	1	2	3	3	1	3	3	2

COURSE NAME: INSTRUMENTATION & SENSOR TECHNOLOGIES FOR

CIVIL ENGINEERING APPLICATIONS

COURSECODE: CE505A

CONTACT:4:0:0

TOTALCONTACTHOURS:48HRS

CREDITS: 4

Prerequisites: Knowledgeon practical training and measurement best practice for a range of temperature, pressure, electrical, velocity, acceleration and vibration systems.

CourseObjective:

The objective of this Course is to understand instrumentation, sensor theory and technology, data acquisition, digital signal processing, damage detection algorithm, life time analysis and decision making.

CourseOutcome:

CO1:To analyze the errors during measurements

CO2:To specify the requirements in the calibration of sensors and instruments and describe the noise added during measurements and transmission

CO3:To describe the measurement of electrical variables and describe the requirements during the transmission of measured signals

CO4: To construct Instrumentation/Computer Networks and suggest proper sensor technologies for specific applications

CO5: To design and set up measurement systems and do the studies

Coursecontents:

Module-I: 12L Fundamentals of Measurement, Sensing and Instrumentation covering definition of measurement and instrumentation, physical variables, common types of sensors; Describe the function of these sensors; Use appropriate terminology to discuss sensor applications; and qualitatively interpret signals from a known sensor type, types of instrumentation, Sensor Specifics, Permanent installations, Temporary installations; **Module-II:** 12L Sensor Installation and Operation covering to: i) Predict the response of sensors to various inputs; ii) Construct a conceptual instrumentation and monitoring program; iii) Describe the order and methodology for sensor installation; and iv) Differentiate between types of sensors and their modes of operation and measurement and v) Approach to Planning Monitoring Programs, Define target, Sensor selection, Sensor siting, Sensor Installation & Configuration, Advanced topic, Sensor design, Measurement uncertainty 12L **Module-III:** Data Analysis and Interpretation covering a) Fundamental statistical concepts, b) Data reduction and interpretation, c) Piezometer, Inclinometer, Strain gauge, etc. d) Time domain signal processing, e) Discrete signals, Signals and noise and f) a few examples of statistical information to calculate are: Average value (mean), On average, how much each measurement deviates from the mean (standard deviation), Midpoint between the lowest and highest value of the set (median), Most frequently occurring value (mode), Span of values over which your data set occurs (range) **Module-IV:** 12L

Frequency Domain Signal Processing and Analysis covering Explain the need for frequency domain analysis and its principles; Draw conclusions about physical processes based on analysis of sensor data; Combine signals in a meaningful way to gain deeper insight into physical phenomena, Basic concepts in frequency domain signal processing and analysis, Fourier Transform, FFT (Fast Fourier Transform), Example problems: Noise reduction with filters, Leakage, Frequency resolution

Tutorials from the above modules demonstrating clearly the understanding and use for the sensors and instruments used for the problems posed and inferences drawn from the measurement and observations made along with evaluation report

Text/ReferenceBooks:		
Name	Author	Publishers
Measurement and Instrumentation Principles	Alan S Morris (2001)	3rd/e, Butterworth Hienemann
Electronic Instrumentation and Measurements	David A. Bell (2007),	2nd/e, Oxford Press
Principle of Electrical Measurement	S. Tumanski (2006),	Taylor & Francis
Measurement Theory for Engineers	Ilya Gertsbakh (2010),	Springer

CO-POmapping:															
CO	PO 1	PO2	PO 3	PO4	PO 5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	1	2	3	2	3	3	3	2	1	2	2	1	2	2	2
CO2	3	3	3	3	2	1	3	3	3	2	1	2	2	2	2
CO3	3	3	3	3	2	2	3	3	2	3	2	2	3	3	3
CO4	3	3	3	3	3	3	3	1	3	2	3	3	3	3	3
CO5	2	2	3	3	1	2	3	1	3	1	3	1	3	2	1

COURSE: SURVEYING & GEOMATICS

COURSECODE: CE505B

CONTACT:4:0:0

TOTALCONTACTHOURS:48HRS

CREDITS: 4

Prerequisites: Knowledgeon practical training and measurement best practice for a range of temperature, pressure, electrical, velocity, acceleration and vibration systems.

CourseObjective:

The objective of this Course is to understand instrumentation, sensor theory and technology, data acquisition, digital signal processing, damage detection algorithm, life time analysis and decision making.

CourseOutcome:

CO1:Describe the function of surveying and work with survey instruments, take observations, and prepare plan, profile, and cross-section and perform calculations.

CO2: Calculate, design and layout horizontal and vertical curves.

CO3:Operate a total station and GPS to measure distance, angles, and to calculate differences in elevation. Reduce data for application in a geographic information system.

CO4: Relate and apply principles of photogrammetry for surveying.

CO5: Apply principles of Remote Sensing and Digital Image Processing for Civil Engineering problems.

Coursecontents:

engineering.

Coursecontents:	
Module-I:	
Introduction to Surveying: Definition, Classification, Principles, Survey stations and Survey lines; Introduction to measurement of distance, direction and elevation; Ranging and it methods, Meridians	12L
and Bearings, Methods of leveling, Booking and reducing levels, Reciprocal leveling, distance of	
visible horizon, Profile leveling and cross sectioning, Errors in leveling; Introduction to methods of	
plane table surveying; Contouring: Characteristics, methods, uses, computation of areas and volumes.	
Theodolite survey: Instruments, Measurement of horizontal and vertical angle; Methods of horizontal	
and vertical control, Triangulation: Figures or systems, Signals, Satellite station, Baseline and its importance, corrections, Trigonometric leveling: Accessible and inaccessible objects.	
Module-II:	8L
Curves: Elements of simple circular curves, Theory and methods of setting out simple circular	
curves, Transition curves- types, characteristics and equations of various transition curves;	
Introduction to vertical curves.	
Module-III:	8L
Modern Field Survey Systems: Principle and types of Electronic Distance Measurement systems and	
instruments, Total Station- its advantages and applications; Global Positioning SystemsSegments,	
working principle, errors and biases. Geographic Information System: Concepts and data types, data	
models, data acquisition. GIS applications in civil engineering	
Module-IV:	0.7
Photogrammetric Survey: basic principles, aerial camera, scale of a vertical photograph, relief	8L
displacement of a vertical photograph, height of object from relief displacement, flight planning for	
aerial photography, selection of altitude, interval between exposures, crab and drift, stereoscope and	
stereoscopic views, parallax equations. Introduction to digital photogrammetry.	
Module- V:	
Remote Sensing: Concepts and physical basis of Remote Sensing, Electromagnetic spectrum,	101
atmospheric effects, image characteristics. Remote sensing systems, spectral signatures and	12L
characteristics spectral reflectance curves. Salient features of some of Remote Sensing satellites	

missions. Digital image processing: Introduction, image rectification and restoration, image enhancement, image transformation, image classification. Applications of remote sensing to civil

Text/ReferenceBooks:											
Name	Author	Publishers									
Advanced Surveying: Total Station, GIS and Remote Sensing	Madhu, N, Sathikumar, R and Satheesh Gobi	Pearson India, 2006.									
Geomatics Engineering	Manoj, K. Arora and Badjatia,	Nem Chand & Bros, 2011									
Surveying and Levelling, Vol. I and II	Bhavikatti, S.S.	I.K. International, 2010									
Higher Surveying	Chandra, A.M.,	Third Edition, New Age International (P) Limited, 2002.									
Remote sensing and Geographical information system	Anji Reddy, M.	B.S. Publications, 2001.									
Surveying, Vol-I, II and III	Arora, K.R.	Standard Book House.									
Surveying Vol. I, II,	Punmia BC et al	Laxmi Publication									
Remote Sensing and Geographical Information System,	Chandra AM and Ghosh SK	Alpha Science									
Remote Sensing & Image Interpretation	Lillesand T M et al	John Wiley & Sons									

CO-POmapping:															
CO	PO	PO2	PO	PO4	PO	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
	1		3		5					0	1	2	1	2	3
CO1	1	2	3	2	3	3	3	2	1	2	2	1	2	2	2
CO2	3	3	3	3	2	1	3	3	3	2	1	2	2	2	2
CO3	3	3	3	3	2	2	3	3	2	3	2	2	3	3	3
CO4	3	3	3	3	3	3	3	1	3	2	3	3	3	3	3
CO5	2	2	3	3	1	2	3	1	3	1	3	1	3	2	1

COURSE: APPLICATION OF IOT IN CIVIL ENGINEERING

COURSECODE: CE505C

CONTACT:4:0:0

TOTALCONTACTHOURS:48HRS

CREDITS: 4

Prerequisite: Operating System, Wireless Sensor Networks, Computer Networks, Cryptography, Communication Technology, Python Programming Language, and Cloud computing.

CourseObjective:

To understand the fundamentals of Internet of Things.

To build a small low cost embedded system using Arduino / Raspberry Pi or equivalent boards.

To apply the concept of Internet of Things in the real world scenario.

CourseOutcomes:

Upon completion of this course, students will acquire knowledge about:

- CO-1 Design a portable IoT using Arduino/ equivalent boards and relevant protocols.
- CO-2 Develop web services to access/control IoT devices.
- **CO-3** Deploy an IoT application and connect to the cloud.
- **CO-4** Analyze applications of IoT in real time scenario.

Module – 1: Wireless Sensor Network [6L]

Network and Communication aspects, Wireless medium access issues, MAC protocol, Routing protocols, Sensor deployment and Node discovery, Data aggregation and dissemination, Topology, Connectivity, Single-hop and Multi-hop communications.

Module - 2: Fundamental of IoT [6L]

The Internet of Things, Time for Convergence, Towards the IoT Universe, Internet of Things Vision, IoT Strategic Research and Innovation Directions, IoT Applications, Future Internet Technologies, Infrastructure, Networks and Communication, Design challenges, Development challenges, Security challenges, Other challenges.

Module – 3: IoT and M2M [6L]

Main design principles and needed capabilities, IoT architecture outline, standards, M2M and IoT Technology Fundamentals, Devices and gateways, Local and wide area networking, M2M Value Chains, IoT Value Chains, An emerging industrial structure for IoT, The international driven global value chain and global information monopolies. M2M to IoT Architectural Overview, Main design principles and needed capabilities, An IoT architecture outline, standards considerations.

Module – 4: IoT Architecture [6L]

Introduction, Architecture Reference Model- Introduction, Reference Model and architecture, IoT reference Model, IoT Reference Architecture- Introduction, Functional View, Information View, Deployment and Operational View, Other Relevant architectural views.

Module – 5: IoT Privacy, Security and Governance [8L]

Introduction, Overview of Governance, Privacy and Security Issues, Access Control, Authentication and Authorization, Distributed trust in IoT, Secure Platform design, Smart

Approach. Data Aggregation for the IoT in smart cities, Intrusion detection and prevention, Security attacks and functional threats.

Module – 6: IoT Layers Architecture [8L]

PHY/MAC Layer - 3GPP MTC, IEEE 802.11, IEEE 802.15, Wireless HART, Z-Wave, Bluetooth Low Energy, Zigbee Smart Energy, DASH7; Network Layer - IPv4, IPv6, 6LoWPAN, 6TiSCH, ND, DHCP, ICMP, RPL; Transport Layer - TCP, UDP, TLS, DTLS; Session Layer - HTTP, CoAP, XMPP; Service Layer - oneM2M, ETSI M2M.

Module – 7: IoT Applications for Value Creations [8L]

Introduction, IoT applications for core industry: Future Factory Concepts, Smart Objects, Smart Applications, Four Aspects in your Business to Master IoT, Big Data and Serialization, IoT for Retailing Industry, Oil and Gas Industry, Real-time monitoring and control of processes - Deploying smart machines, smart sensors, and smart controllers with proprietary communication and Internet technologies, Remote control operation of energy consuming devices.

Text/ReferenceBooks:

- **1.** ArshdeepBahga, Vijay Madisetti, "Internet of Things A Hands-on Approach", Universities Press, 2015.
- **2.** Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers", Apress, 2014.
- 3. Marco Schwartz, "Internet of Things with the Arduino Yun", Pack Publishing, 2014.
- **4.** Simon Monk, "Programming the Raspberry Pi: Getting Started with Python", McGraw Hill, 2013.
- 5. CharalamposDoukas,"Building Internet of Things With the Arduino", Second Edition, 2012.
- **6.** Dr.John Bates, "Thingalytics: Smart Big Data Analytics for the Internet of Things", Software AG Publisher, 2015.

CO-POmapping:

CO	PO	PO2	PO	PO4	PO	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
	1		3		5					0	1	2	1	2	3
CO1	1	2	3	2	3	3	3	2	1	2	2	1	2	2	2
CO2	3	3	3	3	2	1	3	3	3	2	1	2	2	2	2
CO3	3	3	3	3	2	2	3	3	2	3	2	2	3	3	3
CO4	3	3	3	3	3	3	3	1	3	2	3	3	3	3	3

COURSE NAME: SOIL MECHANICS LAB-

IICOURSECODE: CE591

CONTACT:0:0:3 CREDITS:1.50

Prerequisites: Basiccourseonsoilmechanics

withunderstandingofsoilparameters, behaviorandresponse against loading.

CourseObjective:

Students will be able to access unconfined compressive strength of soil, she ar parameter of soil by direct she are test and undrained she ar strength by vaneshe artest .

Students will be familier with fractional test standard penetration test.

CourseOutcome:

CO1: Abilitytocaculatethe compressive

strengthofsoilCO2:Abilitytodetermineshearstrengthofsoi

1

CO3: Abilitytounderstand standard penetrationtest

CO4: Abilitytounderstand consolidationparametersofsoil

CO5: Abilitytoperformallthetest fordeterming shearstrengthofsoil

LISTOFEXPERIMENT:

- 1. Determination of compressibility characteristics of soil by Oedometer test (coefficient of consolidation & compression Index)
- 2. Determination of unconfined compressive strength of soil
- 3. Determination of Shear parameter of soil by Direct shear test
- 4. Determination of undrained shear strength of soil by Vaneshear test.
- 5. Determination of shear parameter of soil by Triaxial test (UU)
- 6. StandardPenetrationTest
- 7. ExptNo.6bylargegroupsinthefield.

Text/ReferenceBooks:

SoiltestingbyT.W. Lamb(JohnWilley)SP-

36(Part-I&Part-II)

Soil Mechanics Laboratory Manual by B. M. Das, OXFORD UNIVERSITY

PRESSMeasurementofengineeringpropertiesofsoilbyE.JaibabaReddy&K.

Ramasastri.

CO-POmapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂	PSO3
CO1	3	3	1	1	2	1	2	2	2	1	2	3	3	2	3
CO2	3	3	2	2	2	1	2	2	2	2	2	3	3	2	3
CO3	2	2	1	1	2	2	2	3	2	2	2	3	2	2	3
CO4	3	3	3	2	3	2	3	2	2	2	3	3	2	2	3
CO5	3	3	2	2	2	2	3	2	2	2	3	3	2	2	3

COURSENAME:HIGHWAY& TRANSPORTATION ENGINEERING LAB

COURSECODE: CE592

CONTACT:0:0:3 CREDITS:1.50

Prerequisites: Student

shouldhavethebasicknowledgeaboutHighway&Transportationengineering.

Course Objective: The objective of this course is to understand the characteristics and behaviorof highway materials used in highway engineering. Students will learn standard principles and procedure to design prepare and/or test materials such as B.M.&S.D.B.C. mixdesign including Marshal Stability Test. Know how to select materials based on their properties and their proper use for a particular facility under prevailing loads and environmental conditions.

CourseOutcome:

CO1:Identifythefunctionalroleofdifferentmaterialsofhighwayengineering.

CO2:ApplythisknowledgetomixdesignphilosophytogetdifferentsuitableB.M.&S.D.B.C.Mix.

CO3: Students hould be able to test of existing highway and examine the quality of that highway by Benkelm and Beam Test.

CO4: Student shalllearntoworkinateamto achieve theobjective.

LISTOFEXPERIMENT:

1. Testsonhighwaymaterials-Aggregates-Impactvalue,los-

Angeles Abrasion value water absorption, Elongation & Flakiness Index.

- 2. **Bitumen&bituminousmaterials** SpecificGravity,PenetrationValue, Ductility,SofteningPoint,LossonHeating,Flash&FirePointTest.
- 3. Strippingvaluetest
- 4. **Design ofmixgradation**formixsealsurfacing DesignofB.M.&S.D.B.C. Mix
- 5. MarshalStabilityTest.
- 6. Benkelman BeamTest.

Text/ReferenceBooks:

Highwaymaterialtesting(LaboratoryManual)byS.K.Khannaand CE.G.

JustoRelevantIS&I.R.C.codes.

BIScodesonAggregates&Bituminous materials

CO-POmapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	2	2	1	-	1	1	3	3	2	2
CO2	3	3	3	3	2	2	2	1	1	2	1	3	3	3	2
CO3	3	3	3	3	3	2	2	2	1	3	2	3	2	3	3
CO4	-	3	3	3	2	2	2	3	3	3	3	3	1	3	3

COURSENAME: ENVIRONMENTALENGINEERINGLABC

OURSECODE:CE593 CONTACT:0:0:3 CREDITS:1.50 **Pre requisites:** Basic courseofenvironmentalengineeringwithpreliminaryknowledgeof chemistry. Knowledgeof differentimpurities and different dissolved solidswith chemical behavior of that element.

Course Objective: Students will gain hands on knowledge on different test of water like totalsolids, turbidity, chloride, carbonate, hardness, fluoride, Iron, residual chlorine demand, BOD,COD,DO,organicmatter,nitrate,phosphate andbacteriologicalquantityofwater.

CourseOutcome:

CO1:To enumerate various economic, financial, social and sustainable to ols in infrastructure management.

CO2: Identify appropriate test for environmental

 $problems CO3: Statistically analyze and interpret laboratorial \\ r$

esults

CO4:Applythe

laboratorial results to problemidentification, quantification, and basic environmental designand technicals olutions.

CO5: Understand and use of water and was tewaters ampling procedures and sample preservations.

LISTOFEXPERIMENT:

EXPERIMENT NO.	EXPERIMENTNAME	TYPEOFTEST					
1.	Determinationofturbidityfora givensample ofwater						
2.	Determinationofsolidsinagivensampleofwater:TotalS 2. olids, SuspendedSolidsandDissolvedSolids						
3.	DeterminationofpHforagivensample ofwater						
4.	DeterminationofconcentrationofChloridesin agivensampleofwater						
5.	Determinationofcarbonate, bi-						
6.	Determination of hardness for a given sample ofwater	CHEMICAL					
7.	DeterminationofconcentrationofFluoridesinagiv ensampleofwater						
8.	DeterminationofconcentrationofIroninagivensam pleofwater						
9.	Determination of the Optimum Alum Dose for agivensampleofwater throughJarTest						

10	DeterminationoftheResidualChlorineinagivensam	
10.	pleofwater	
11.	DeterminationoftheChlorineDemandfor	
11.	agivensampleofwater	
12.	DeterminationoftheAvailableChlorinePercentageina	
12.	givensample ofbleachingpowder	
13.	DeterminationofamountofDissolved	
15.	Oxygen(DO)inagivensampleofwater	
	Determinationofthe	
14.	BiochemicalOxygenDemand(BOD)foragiven	
	sample ofwastewater	
	Determinationofthe	
15.	ChemicalOxygenDemand(COD)foragiven	
	sample ofwastewater	
16.	Determination of Organic matter/Organic Carbon for	
10.	agivensampleofwater	
17.	DeterminationofPhosphatefor	
17.	agivensampleofwater	
18.	Determination of Nitrate for a given sample	
10.	ofwater	
19.	DeterminationofSulphate	
17.	foragivensampleofwater	
	Determination of bacteriological quality of water: pre	
20.	sumptive test,	BACTERIOLOGICAL
	confirmativetestandDeterminationofMPN	

Text/ReferenceBooks:

Name	Author	Publishers
1.EnvironmentalEngineering. Volume-1 andVolume-2.2.	Garg,S.K.	KhannaPublishers
EnvironmentalEngineering.	Peavy, H.S, Rowe, D.R,Tchobanoglous,G	McGraw Hill InternationalEdition/TataM cGrawHillIndianEdition

CO-POmapping:

CO	PO	PO ₂	PO	PO4	PO	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
	1		3		5					0	1	2	1	2	3
CO1	1	2	3	2	3	3	3	2	1	2	2	1	2	2	2
CO2	3	3	3	3	2	1	3	3	3	2	1	2	2	2	2
CO3	3	3	3	3	2	2	3	3	2	3	2	2	3	3	3
CO4	3	3	3	3	3	3	3	1	3	2	3	3	3	3	3
CO5	2	2	3	3	1	2	3	1	3	1	3	1	3	2	1

COURSE NAME: MINOR PROJECT I COURSECODE:PR591 CONTACTHOUR:0:0:2 CREDITS:1

Prerequisite:Fundamentals of Civil Engineering.

CourseContents:

- i) literature review on topic of interest.
- ii) Finding research Gaps
- iii) Attempt to solve problems towards filling the research gaps.

3 rd Year6 th Semester									
Sl.	Broad Category	Category	Course Code	Course]	Hour	s pe	r week	Credits
No.	category	dategory	Gouc	Title	L	T	P	Total	
				A.THEORY					
1	ENGG	Major	CE601	Structural Design-II	3	0	0	3	3
2	ENGG	Major	CE602	Construction Planning and Management	3	0	0	3	3
3	ENGG	Major	CE603	Irrigation and Water Resource Engineering	4	0	0	4	4
4	SCI	Minor	CE604	A. Operations Research B. Human Resource Management	4	0	0	4	4
				C. Studies On Six Sigma					
				B.PRACTICAL					
5	ENGG	Major	CE691	Structural Design and Detailing Lab	0	0	3	3	1.5
6	ENGG	Major	CE692	Computer Aided Design and Drafting Lab	0	0	2	2	1.0
7	ENGG	Internship	CE693	Industrial Training (Min 2 weeks)	0	0	2	2	1.0
8	PROJECT	Minor	PR691	Minor Project-II	Minor Project-II 0 0 2		2	2	1.0
	T	otalof Theor	y,Practicaland	MandatoryActivities/Courses				23	18.5

^{*&#}x27;Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines.

COURSE NAME: STRUCTURAL DESIGN - II

COURSE CODE: CE 601

CONTACT: 3:0:0

TOTAL CONTACT HOURS: 36 HRS

CREDITS: 3

Pre requisites: A basic concept of material properties and behavior with basic knowledge of structural analysis and structural elements behaviorunder different loading pattern. Knowledge of stress and strain with fundamental concept of Engineering mechanics.

Course Objective: Students will be able to analyse the behaviour of steel structure under different type of loading. To design a connection using IS:800-2007 and satisfy the serviceability and strength parameters. To acquire the knowledge to design tension, compression, members columns, beams. Using the codal Stipullation and basic knowledge of structural analysis students will be able to design plate girders and gentry girders considering lateral buckling.

Course Outcome:

CO1: Understand various types of design methodology as per limit and working stress method

CO2: Interpret different type of connections

CO3: Design compression, tension and beam members

CO4: Analyze column bases

CO5: Design plate girder, uses of stiffeners

Course	CONI	tonte•
Course	CUII	ums.

Module-I:	2L
Materials and Specification:-Rolled steel section, types of structural steel, specifications,	
Residual stress	
Module-II:	6L
Structure connections: Riveted, welded and bolted including High strength friction grip bolted joints— types of riveted & bolted joints, assumptions, failure of joints, efficiency of joints, and design of bolted riveted, fillet and butt welded joints for axial load, IS code provisions.	
Eccentric connection:- Riveted & bolted joints subjected to torsion & shear, tension & shear,	
design of riveted, bolted & welded connection.	
Module-III:	AT
Tension members: Design of tension members, I.S code provisions. Permissible stresses,	4L
Design rules, Examples	
Module-IV:	6 L
Compression members: Effective lengths about major & minor principal axes, I.S code provisions. Permissible stresses, Design rules, Design of one component, two components and built up compression members under axial load, Examples.	
Built up columns under eccentric loading : Design of lacing and batten plates, Different types of Column Bases- Slab Base, Gusseted Base, and Connection details.	
Module-V:	6L
Beams: Permissible stresses in bending, compression and tension, lateral buckling. Design of rolled steel sections, plated beams. Simple Beam end connections, beam -Column connections. I.S code provisions	UL

Module-VI:	6L	
Plate girders: Design of webs & flanges, Concepts of curtailment of flanges – Riveted &		
welded web stiffeners, web flange splices - Riveted, welded& bolted. I.S code provisions		

Module-VII:	6L
Gantry Girder: Design gantry girder considering lateral buckling – I.S code provisions.	
IS 800 – 2007 to be followed for all IS code provisions.	
•	

Text / Reference Books:

Name	Author	Publishers
Design Of Steel Structures	S.K.Duggal	Tata Mc-Graw Hill,
		New Delhi
Design of Steel structures	N. Subramanian	Oxford University
		Press
Design of steel structures	A.S.Arya and J.L.Ajmani	Nemchand& Bros.
Design of steel structures	Vol. I & II	
	Ramachandra	
Design of steel structures	PasalaDayaratnam	A.H.Wheeler& Co Ltd.
		1990
Design of steel structures		Tata McGraw – Hill
		publishing Co. Delhi.
Design of steel structures	Ramamurtham	
IS 800 – 2007(Latest Revised code)		
Bureau of Indian Standard		
S.P.: 6(1) – 1964 Structural Steel Sections		
Bureau of Indian Standard		

CO-PO mapping

CO	PO	PO ₂	PO	PO4	PO	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
	1		3		5					0	1	2	1	2	3
CO1	3	3	3	3	3	3	2	1	1	2	1	2	1	1	2
CO2	2	2	3	3	1	3	2	2	2	2	2	2	2	2	3
CO3	2	2	1	3	3	3	1	2	2	2	2	2	2	2	3
CO4	2	1	2	3	2	2	2	2	2	2	1	2	2	2	3
CO5	2	2	2	3	2	2	2	1	1	2	2	2	2	2	3

COURSE NAME: CONSTRUCTION PLANNING AND MANAGEMENT

COURSE CODE: CE 602

CONTACT: 3:0:0

TOTAL CONTACT HOURS: 36 HRS

CREDITS: 3

Pre requisites: Basic course in construction material and methodology with understanding of structural elements and their uses and sequence of construction, erection. Basic knowledge of quantity Estimation and valuation.

Course Objective: Students will gain knowledge on planning, Regulation and by laws for construction, students will be familiar with fire protection, construction plant and equipments, students will be able to plan and schedule construction project by CPM and CEAT, some knowledge on management and departmental procedures of PWD, EMD and SD and familiarity Cost Analysis, project cost, cost slopes and timeoptimization.

Course Outcome:

CO1: Students will be able to successfully apply business and Management skills in positions within the construction industry.

CO2: Use industry resources including associations and organizations.

CO3: Practice informed decision- making in personal and professional endovers.

CO4: Manage a quality construction project from start to completion while maintaining budget, schedule, and safety requirements.

Course contents:	
Module-I: Planning: General consideration, Definition of aspect, prospect, roominess, grouping, circulation Privacy, acclusion	4L
Module-II: Record tion and Bree large Bree Large in record of side cases. Beek and front space. Covered	4L
Regulation and Bye laws : Bye Laws in respect of side space, Back and front space, Covered areas, height of building etc., Lavatory blocks, ventilation, Requirements for stairs, lifts in public assembly building, offices	
Module-III:	4L
Fire Protection : Fire fighting arrangements in public assembly buildings, planning, offices,	₹L
auditorium	
Module-IV:	6 L
Construction plants & Equipment: Plants & equipment for earth moving, road	
constructions, excavators, dozers, scrapers, spreaders, rollers, theiruses.	
Plants & Equipment for concrete construction: Batching plants, Ready Mix Concrete, concrete	
mixers, Vibrators etc., quality control	
Module-V:	6L
Planning & scheduling of constructions Projects:	
Planning by CPM &PERT, Preparation of network, Determination of slacks or floats. Critical	
activities. Critical path, project duration expected mean time, probability of completion of	
project, Estimation of critical path, problems	
Module-VI:	6L
Management: Professional practice, Definition, Rights and responsibilities of owner,	

engineer,	
Contractors, types of contract	
Module-VII:	6L
Departmental Procedures: Administration, Technical and financial sanction, operation of	
PWD, EMD and SD, Acceptance of tenders, Arbritation, cost Analysis, Direct and Indirect	
project costs, Total costs- cost slopes. Crushing cost and time optimization	

Text / Reference Books:

Name	Author	Publishers
Construction Planning, Equipments and methods	Puerifoy	R.L. McGraw Hill
Management in construction industry	P.P.Dharwadkar	Oxford and IBH Publishing company New Delhi
Construction Management, Critical path Methods in Construction	J.O.Brien	Wiley Interscience
PERT and CPM	L.S. Srinath	-
Project planning and control with PERT and CPM' Construction equipments and its management	B.C.Punmia and K.K.Kandelwal	S.C.Sharma
National Building code BIS	-	_

CO-PO mapping

	PO	P	PO	PO1	PO1	PO1	PSO	PSO	PSO						
	1	O	3	4	5	6	7	8	9	0	1	2	1	2	3
		2													
CO1	2	2	2	2	2	2	-	-	-	-	-	-	2	2	-
CO2	2	2	2	2	1	2	2	-	2	2	2	-	2	2	-
CO3	2	2	1	2	3	2	2	-	2	1	1	-	2	2	-
CO4	•	•	1	1	1	-	-	-	2	1	3	-	2	2	-

COURSENAME: IRRIGATION AND WATERRESOURCEENGINEERING

COURSECODE: CE603

CONTACT:4:0:0

TOTALCONTACTHOURS:48HRSC

REDITS: 4

Prerequisite:IntroductiontoFluidMechanicsinCivilEngineering.

CourseOutcome:

CO1.TheStudentshould Understandthefundamentals

of flow in open channels. CO2. The Students will learn the concepts of irrigation.

CO3. The student should understand estimating the different water requirement of different types of cropsCO4. The student should learn the design of irrigation channels soil conservation, flood

controlandother

watermanagementprojects.

CO5. The Student should understand about ground water resources, a quifers and wells.

Course Objectives: Students will gain knowledge on the hydrologic cycle, rainfall Calculation and measurement and frequency analysis of rainfall intensity curve. students will also be familiar with direct and indirect method of stream flow measurement to acquire the basic engineering technique of calculating hydrograph S curve flood routing. students will gain knowledge on irrigation methods duty, delta and cropseasons. To acquire knowledge on Canalir rigation and design of Alluvial channel by silt theories kennedy's method, lacey's theory.

FamiliaritywithwaterloggingandDrainagewithbasicknowledgeongroundwaterflow,Darcy'slaw,well,tubewell.

CourseContents	
Module1	6L
History of hydrology, Measurement of Rainfall, Rain gauges, Estimation of missing	
Rainfalldata, Checking of consistency, Optimum number	
ofRaingauges.Calculationofaveragerainfalloverarea-	
differentmethods, Frequency analysis of rainfall intensity duration curve, depth-	
area-durationrelationship,maximumintensity/depth-duration-	
frequencyrelationship, Probable maximum precipitation, Rainfall mass	
curve, Hyetograph, Examples.	
Module2	8 L
Evaporation, evapotranspiration and infiltration: Process, evaporimeters, evaporation	
equations, methods for reduce evaporation losses, measurement of evapotranspiration,	
evapotranspirationequation, Potential Evapotranspiration (PET), Actual evapotranspiration	
(AET), Blaney-	
Criddlemethod, Modified Penman's method, Forms of subsurfacewater, aquifer properties, geological	
formation of aquifers, Well hydraulics: steady state flow in wells, equilibrium equation	
forconfined and unconfined aquifers, aquifertests, measurement of drawdown. Examples.	
Module 3	4 L
Stream-Flow measurement: Direct and indirect methods, Examples, Stage discharge	
relationship, SCS-CN method of estimating run-off volume, run-off hydrograph, Factors	
affecting runoffhydrograph,componentsofhydrograph,Factorsaffecting run-off,estimationofrun-	
off,rainfall- runoffrelationship,Examples.	
Module4	6L
Types of Irrigation system and their detail description, Crops and crop seasons in India,	
croppingpattern, duty and delta, relationship in duty & delta, Duty at various places, measures	
forimprovingDutyofwater,Waterrequirements forcrops,Baseperiod,qualityofIrrigationwater,	
frequencyofirrigation, Methodsofapplyingwatertothefield: surface, sub-	
surface, sprinkler and Dripirrigation. Examples.	

Module5	8L
Irrigation canals: design principles of irrigation canals, navigation canals and drainage	
canals.Designofunlinedalluvialchannels	
bysilttheories:Introduction,SedimentLoad,Suspendedloadand its measurement, Bed load and its	
measurement, Kennedy's theory, procedure for design of channel by Kennedy's method, Lacey's	
theory, design procedure by Lacey's	
theory, Crosssection of an irrigation can al, balancing depth. Example.	
Module6	4L
Lining of Irrigation canals: Objectives, advantages and disadvantages of canal lining,	
economicsand requirement of canal lining. Water logging and drainage: causes, Effects and	
prevention ofwaterlogging. Typesofopendrainsandcloseddrains, canaloutlets, landreclamation.	
Example.	

Text/ReferenceBooks:

Name	Author	Publishers
Irrigation Engineering & Hydraulic Structures	S. K. Garg	
Fluid Mechanics	A.K. Jain	

CO-POmapping

	PO	PO1	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO	1	2	2	1	-	2	3	-	1	2	-	1	2	2	-
1															
CO	2	-	1	2	1	1	-	2	2	-	2	2	2	2	-
2															
CO	-	1	1	2	3	2	1	-	2	1	-	-	2	2	-
3															
CO	1	2	-	1	1	3	1	2	1	-	1	2	2	2	-
4															
CO	-	1	1	•	1	-	-	-	-	2	1	1	2	2	-
5															

COURSENAME: OPERATIONS RESEARCHC

OURSECODE:CE604A

CONTACT:4:0:0

TOTALCONTACTHOURS:48HRSC

REDITS: 4

Prerequisites: Basic concepts of Probability distribution, statistical estimation, regression analysis and ANOVA, Basic Mathematics

CourseObjective:

- 1) Tostudyvariousoptimizationtechniquesinrealworld problemsrelatedtocivilengineering
- 2) To studytheinventorymodels
- 3) Tostudyaboutassigningjobstopeopleinanefficientway
- 4) Tostudyabout sequencingtechniques
- 5) Tounderstandtransportationmodelutilityinconstructionindustry

CourseOutcome:

CO1: At the end of the course, the students will be able to identify and develop operational research models from the verbaldescription of the real System.

CO2: Apply the mathematical tools that are needed to solve optimisation problems.

CO3:Usemathematicalsoftwaretosolvetheproposed models.

CO4:Developareportthatdescribesthemodelandthesolvingtechnique,analysetheresultsandproposerecom mendationsinlanguageunderstandabletothedecisionmakingprocessesin ManagementEngineering.

Coursecontents:

Module 1:	10L						
Introduction: Definition and scope of operations research (OR), OR model, solving the							
ORmodel, art of modeling, phases of OR study. Linear Programming: Two variable							
LinearProgrammingmodelandGraphicalmethodofsolution,Simplexmethod,DualSimplex							
method, special cases of Linear Programming, duality, sensitivity analysis.							
Module 2:	8L						
	oL						
Transportation Problems: Types of transportation problems, mathematical							
models,transportationalgorithms,Assignment:Allocation							
andassignmentproblemsandmodels,							
processingofjobthroughmachines.							
Module 3:	407						
NetworkTechniques:Shortestpathmodel,minimumspanningTreeProblem,Max-	10L						
Flowproblem and Min-cost problem. Project Management: Phases of project							
management, guidelines for network construction, CPM and PERT.							
Module 4:	10L						
TheoryofGames:Rectangulargames,Minimaxtheorem,graphicalsolutionof2xnormx2games,gam							
ewithmixedstrategies,reductiontolinearprogrammingmodel.QualitySystems:							
ElementsofQueuingmodel,generalizedpoissonqueingmodel,singleservermodels.							
Module 5:	10T						
	10L						
InventoryControl:Modelsofinventory,operationofinventorysystem,quantitydiscount.Replaceme							
nt:Replacementmodels:Equipmentsthatdeterioratewithtime,equipmentsthat							
failwithtime.							

Text/ReferenceBooks:

Name	Author	Publishers
OperationsResearch	WayneL	ThomsonLearn
		ing,2003.
OperationsResearch-AnIntroduction	HamdyH.Taha	PearsonEducati
		on,2003
OperationsResearch	R.PanneerSeevam	PHILearning, 2008
TotalQualityManagement	V.K.Khanna	NewAgeInternational,
		2008
Linear Programming and Theory	P. M.Karak	ABSPublishingHouse
ofGames		
Linear Programming and Theory	Ghosh	CentralBookAgency
ofGames	andChakrab	
	orty	
OperationsResearch	M. V.DurgaPrasad	CENGAGELearning

CO-POmapping:

	PO1	PO	PO3	PO	PO	PO	PO	PO	PO	PO10	PO11	PO1	PSO1	PSO2	PSO3
		2		4	5	6	7	8	9			2			
CO1	-	-	-	•	-	3	2	-	3	-	-	3	2	2	-
CO2	-	-	-	-	-	1	-	1		3	-	1	2	2	-
CO3	-	-	-	•	-	2	-	-		-	-	1	2	2	-
CO4	-	-	-	-	-	3	2	-	3	3	-	2	2	2	-

COURSENAME: HUMANRESOURCEMANAGEMENTC

OURSECODE:CE604B

CONTACT:4:0:0

TOTALCONTACTHOURS:48HRSC

REDITS: 4

Prerequisites: Basicconcepts of Management and Planning

CourseObjective:

- 1) Explaintheimportanceofhumanresourcesandtheireffectivemanagementinorganizations
- 2) Demonstrate a basic understanding of different tools used in forecasting and planning humanresourceneeds
- 3) Outline the current theory and practice of recruitment and selection and demonstrate the ability toprepare aselectionstrategyfora specificiob.
- 4) Evaluate a benefits package that supports the organization's strategy in line with HRM cost-containment policies and practices and Recommend actions based on results of the compensationanalysis and design compensation schemes that are cost effective, that increase productivity of theworkforce, and comply with the legal framework
- 5) Explain their understanding of the administrative complexities of providing a full array of benefitstoemployeesandthe ways and means of delivering these benefits

CourseOutcome:

CO1:Tounderstandprinciples,processes and practices

ofhumanresourcemanagement. CO2: Toidentifyproblemsor

barrierswhichcomplicateanddistorttheeffectivenessofhumanresource planning.

CO3: Tounderstandvarious provisions contained in labour legislation relating to Industrial relations.

CO4: ApplyHRconceptsandtechniquesinstrategicplanningtoimproveorganizationalperformance.

Coursecontents:	
Module-1:Introduction	8L
HumanResourceManagement- Objectives,ScopeandSignificanceofHRM,	
FunctionsofHRM,ProblemsandProspectsinHRM,Environmentalscanning.	
Module-2:Planning,traininganddevelopment	10L
HumanResourcePlanning,DemandForecastingTechniques,SupplyForecastingTechniques,Analys ingworkanddesigningjobs,RecruitmentandSelection,InterviewingCandidates.Human Resource Development, Orientation, Training and Development, ManagementDevelopment,PerformanceAppraisalandEmployeeCompensation,FactorsI	
nfluencing	
EmployeeRemunerationandChallenges,Incentivesandbenefits	
Module-3:LabourLaws ContractLaboutAct, EqualRemunerationAct, MinimumWage, Paymentofwage, Gratuity, Bonuspay ment, Industrial Disputes and Discipline.	10L
Module-4:ManagingEthicalIssuesin HumanResourceManagement	8L
Workers Participation in Management, Employees a fety and health, Managing Global Human Resources and Trade Unions, International HRM, Future of HRM and Human Resource Information Systems.	

Text/ReferenceBooks:

- 1. Aswathappa, HumanResourceManagement—TMH., 2010.
- 2. GarryDesslerandBijuVarkkey,HumanResourceManagement,PEA., 2011.
- 3. Noe&Raymond,HRM:GainingaCompetitiveAdvantage, TMH,2008.
- 4. BohlanderGeorgeW, SnellScottA, HumanResourceManagement, CengageLearning, 2009.
- 5. WilliamJBrunsJr. "PerformanceMeasurement, Evaluation and Incentives", TataMcGraw
- 6. MonappaA,"PersonnelManagement", TataMcGrawHill, NewDelhi, 1997
- 7. RaoT,"HRDintheNewEconomicEnvironment",TataMcGrawHill

CO-POmapping:

	PO	PO1	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1	2	•	-	2	•	•	•	•	3	2	-	3	2	2	•
CO 2	-	2	-	3	-	2	-	2	-	3	-	2	2	2	-
CO 3	-	2	-	3	•	•	-	•	-	3	2	2	2	2	•
CO 4	2	•	-	-	•	3	2	•	-	2	3	-	2	2	-

COURSENAME:STUDIESONSIXSIGMAC

OURSECODE:CE604C

CONTACT:4:0:0

TOTALCONTACTHOURS:48HRSC

REDITS: 4

Prerequisites: Basicconcepts of Management and Planning

CourseObjective:

- $1. \quad To translate the selection, application and implementation of a Six Sigma project including roles and responsibility of teammembers$
- 2. Collectappropriated at a from process to support problems olving.
- 3. Createdetailsflowchart and process maps.
- 4. Demonstrateabilitytocontrolandmonitorprocess.

CourseOutcome:

CO1: Understand requirement of implementation of Six Sigma.

CO2:RelateSixSigmaconcepttotheoverallbusinessmissionandobjective.

CO3:UnderstandSixSigmamethodologyincludingDMAIC.

CO4: Employ Six Sigmas kills to lead a successful process improvement project for a meaning ful result and the successful process improvement project for a meaning ful result. The success of the successful process improvement project for a meaning full result. The successful process improvement project for a meaning full result. The successful process improvement project for a meaning full result. The successful process improvement project for a meaning full result. The successful process improvement project for a meaning full result. The successful process improvement project for a meaning full result. The successful process improvement project for a meaning full result. The successful process improvement project for a meaning full result. The successful process improvement project for a meaning full result. The successful process improvement project for a meaning full result in the successful process improvement project for a meaning full result in the successful process in the success in the successful process in the successful process in the success in the successful process in the success in the success in th

Coursecontents:	
Module 1:	4L
Introduction—GeneralHistoryofSixSigma,Evolutionand Value ofSixSigma,The	4L
BasicsandmeaningofSixSigma,BasicConcepts of variation.	ı
Module 2:	4L
SixsigmaRolesandresponsibilities,ImplementingSixSigma,SixSigmaRoadmap,ProcessMapping	712
,LeanPrinciplesandValueStreamMapping,SelectionanddefiningSixSigma	Ī
Projects.	Ī
Module 3:	
	3L
BecomingaCustomerandMarket-DrivenEnterprise, Voiceofthecustomer,	Ī
CustomerExpectationsandNeeds,LinkingSixSigma ProjectstoStrategies	21
Module 4:	3L
Attributes of Good Metrics, Using Resources Wisely, Project Management Using the DMAIC	İ
andDMADVModels	
Module 5:	3L
The Lean enterprise, The History of Lean, Understanding lean, Lean & Six Sigma, The sevenelementsofwaste	İ
Module 6:	3L
TheDefinePhase— Defining aprocess, CriticaltoQualityCharacteristics, Cost of Poor	İ
Quality,BasicSixSigmaMetrics,Pareto Analysis	ı
Module 7:	4L
TheMeasurePhase—	ı
ProcessDefinition, Cause and effect/Fishbone Diagram, Basic Probability and Statistics, X-	Ī
YDiagram, NormalDistribution and Normality, Precision &	Í
Accuracy, Process Capability	Í
Module 8:	4L
TheAnalyzePhase- PatternofVariation, Multi-VariAnalysis,InferentialStatistics, Sampling	-

Techniques&Uses,CentralLimitTheorem,HypothesisTesting,ConfidenceIntervals,AnalysisofV	
ariance(ANOVA)	
Module 9:	4L
ImprovePhase:Simple linearRegression,Correlation,RegressionEquations,Residual	
analysis, Multipleand Non-linear regression, Datatransformation, Box Cox.	
Module 10:	4L
TheControlPhase:LeanControls,ControlMethodsfor5S,Kanban,Poka-Yoka(Mistake	
Proofing), Statistical process Control (SPC), Data collection of SPC, Six Sigma Control	
Plans,Cost benefitanalysis,ElementsofcontrolPlan,ElementsofResponse Plan.	

Text/ReferenceBooks:

Name Author **Publishers** Simplifiedsixsigmamethodologytools

N. GopalaKrishnan PHIandimplementation

Eightstepstoproblemsolving-sixsigmaMohitSharma Zorba

Books Six Sigma Handbook**PYZBEK**

ASQCertified SixSigmaHandbook AmericanSocietyof

Quality

CO-POmapping

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1	3	1	•	1	-	1	•	Ī	•	•	•	1	2	2	-
CO 2	2	1	1	1	1	1	•	ı	•	•	•	1	2	2	-
CO 3	3	3	3	2	2	•	-	•	•	-	•	1	2	2	-
CO 4	3	3	3	3	3				2	2	2	1	2	2	-

COURSENAME:STRUCTURALDESIGNANDDETAILINGLAB

COURSECODE: CE691

CONTACT:0:0:3 CREDITS:1.50

Prerequisites:

Students hould knowledge about recand steel structure design of various structural components and building structure.

 $\label{lem:courseObjective:Studentshouldbeabletodesignstructural components and RCC and steel structure. Students will be able to understand about the members of structure, different loading condition how it behaves and where to use such member.$

CourseOutcome:

CO1: Design principle of R.C.C. sections. Limit statemethod of design Loads and stresses to be considered in the design as per I.S. code provision.

CO2: Design&detailing ofai)simplysupportedR.C.CBeamii)ContinuousT-Beam

CO3:Studentshould beabletoDesign&Detailingofcolumns,isolatedandcombinedfooting.CO4:

Design of different units: Slab, beam column, roofing and staircase from floor plan of amultistoriedframebuilding,typicaldetailingofa twowayfloorslab.

CO5:Problemsongeneralconsideration and basic concepts

LISTOF TOPICS:

- 1. Generalconsiderations: Designprinciple of R.C.C. sections. Limitstatemethod of design Loads and stresses to be considered in the design as per I.S. code provision.
- 2. Design&detailingofai)simplysupported R.C.CBeamii)ContinuousT-Beam.
- 3. Design&Detailingofcolumns,isolatedandcombinedfooting
- 4. Design&detailing ofai)simplysupportedonewayslab ii)OnewayContinuousslab.
- 5. Designofdifferentunits:Slab,beamcolumn, roofingandstaircasefromfloorplanofamultistoriedframe building,typicaldetailingofa twowayfloorslab.
- 6. Problemsongeneralconsideration and basic concepts
- 7. Discussionondifferentloads(i.e. windload, Deadload, liveload and others) asperIS875
- 8. Design&drawingofthefollowingcomponentsofa rooftruss:

Members of the roof truss. Joints of the roof truss members, Purlins, Gablebracings, Column with bracing s, Column base plate, Column foundation

TextBooks/ReferenceBooks:

R.C.Cdesign:Punmia,Jain,Jain

DesignOfSteelStructures-S.K.DuggalTataMc-Graw Hill,New

DelhiNewDelhiReinforecedcementconcretedesign-Nilamshrama

Design of Steel structures N. Subramanian Oxford University

PressDesignofsteelstructures A.S. Arya and J.L. Ajmani Nemchand & Bros.,

CO-POr	napp	ing:														
CO	PO	PO2	PO	PO4	PO	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO	Ī
	1		3		5					0	1	2	1	2	3	l

CO1	3	2	2	2	2	1	1	2	1	1	1	2	2	2	2
CO2	3	2	2	2	2	2	2	2	2	2	2	1	2	3	3
CO3	3	2	2	2	2	1	1	1	2	1	2	2	3	2	3
CO4	3	1	1	1	1	2	1	1	3	2	2	2	3	2	3
CO5	3	3	3	1	1	1	2	2	2	2	2	2	3	2	2

COURSENAME: COMPUTERAIDEDDESIGN & DRAFTING LAB

COURSECODE: CE692

CONTACT:0:0:2 CREDITS:1.00

Prerequisites: Fundamentals of computer operation with basic knowledge of Structure Analysis and Design for different structural components with basic knowledge of engineering drawing.

Course Objective: Students will be familiar with features of detailing and design of structure by using software detailing of different structural elements and analysis and design of those by using softwares.

CourseOutcome:

CO1: Students will be able to integrate the role of graphic communication in the engineering design process

CO2: Students will be able to use CADs of twa retogenerate a computer

modelandtechnicaldrawingforasimple, well-defined partor assembly.

CO3:Studentswillbeabletoapplybasicconceptstodevelopconstruction(drawing)

techniquesandproduce2DOrthographicProjections

CO4: Understandanddemonstratedimensioning concepts and techniques

CO5:BecomefamiliarwiththeuseofBlocks, DesignCenter, and ToolPalettes,

SolidModelingconceptsandtechniques

LISTOFLESSONS:

- $1. \quad Introduction and important features of a software dealing with an alysis and design of structures \\$
- 2. Analysisanddesignofamultistoriedbuildingusingsoftware.
- 3. Preparation of detailed drawings of different structural elements including ductility detailing.
- 4. RCCSlab,beam,columnand footingdesign.
- 5. DesignanddetailingofSteelStructures.
- 6. Analysis, DesignandDetailingofIsolatedandcombinedRCFootings

TextBooks/ReferenceBooks:

- DesignofRCCBuildingsusingSTAAD PrpV8iwith IndianExample:StaticandDynamicMethods—T.S.Sharma—EducreationPublishing
- 2. ExploringBentleySTAADPro
 - CONNECTEdition--Prof.ShamTickoo PurdueUniv.- CadcimTechnologies
- 3. Analysisand DesignofStructures: APracticalGuidetoModelling–D.Trevor Jones–Bentley

CO-POmapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	3	2	1	3	1	1	1	3	3	1	3	3	3	3
CO2	3	3	3	1	2	2	1	-	2	2	2	3	3	3	3
CO	3	3	3	1	3	2	2	-	3	3	2	3	3	3	3

3															
CO4	2	2	2	1	2	2	1	2	3	2	2	3	3	3	3
CO 5	3	3	2	2	3	1	2	1	3	3	2	3	3	3	3

COURSE NAME: INDUSTRIAL TRAINING

COURSE CODE: CE693

CREDIT: 1.0 Course contents:

Collective Data from 3rd to 6th Semester (Summer/Winter Training during Semester Break & Internship should be done after 5th Semester or 6th Semester). All related certificates to be collected by the training/internship coordinator(s).

COURSE NAME: MINOR PROJECT II

COURSE CODE: PR691

CONTACT:0:0:2

CREDIT: 1

Course contents:

It is intended to start the project work in the semester. The students in a group of 4 to 6 works on a topic are to be approved by the head of the department under the guidance of a faculty member. The students prepare a comprehensive project report after completing the work to the satisfaction of the supervisor to be submitted at the end of the semester. The project work is evaluated based on oral presentation and the project report may jointly by examiners constituted by the Head of the Department.

			4 th	Year7 th Semester					
Sl	Broad Category	Category	Course Code	Course Title	Н	ours	per w	veek	Credits
No					L	T	P	Total	
_				A.THEORY					
1	ENGG	Major	CE701	Advanced Transportation Engineering	3	1	0	4	4
2	ENGG	Major	CE702	Advanced Structural Analysis Advanced Foundation Engineering Pavement Design	3	0	0	3	3
3	ENGG	Major	CE703	D. Water and Wastewater Engineering E. Hydraulic Structure F. Water Pollution and its Control	3	0	0	3	3
4	SCI	Minor	CE704	D. Human Resource Development and Organizational Behavior E. History of Science & Engineering F. Finite Element Method	3	0	0	3	3
5	HUM	Minor	HU(CE)705	Economics for Engineers	3	0	0	3	3
				B.PRACTICAL					
6	PROJECT	Major	PR781	Major Project-I	0	0	8	8	4
7	ENGG	Major	CE782	Internship (Min 1 month)	0	0	2	2	1.0
8	НИМ	Ability Enhanceme nt Course	HU(CE)791	Technical Seminar Presentation	0	0	1	1	0.5
9	ENGG	Skill enhanceme nt Course	HU(CE)792	Skill Development : Technical article writing	0	0	1	1	0.5
	Т	otalof Theor	y,Practicaland	lMandatoryActivities/Cour	ses			26	22

*'Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines.

COURSENAME: ADVANCEDTRANSPORTATIONENGINEERINGC

OURSECODE:CE701

CONTACT:3:1:0

TOTALCONTACTHOURS:48HRSC

REDITS: 4

Prerequisites: Basicknowledgeofontransportationengineeringwithfundamentalsofpavement designalignmentsurveyand testingprocedureofroad

materialunderstandingbasicmethodologyoftransportation models and uses.

Course Objective: Students will gain knowledge on traffic Engineering and

transportationplanning.Familiaritywithrailwayengineeringlocationsurvey,

Geometricdesign, signaling and track

maintenance. To acquire knowledge on Airportengineering-

runways,taxiways,aprons,windrosediagram,designandtaxiwayandterminalbuilding.

CourseOutcome:

CO1:Learnabouthighwayengineeringandtrafficengineering.

CO2: Learnnaboutairportengineering

CO3: LearnaboutRailwayengineering.

Coursecontents:

Module-I:	
Traffic Engineering: Road user and vehicle characteristics; Traffic flow characteristics-	8 L
TrafficVolume,Speed,Headway,ConcentrationandDelay;Trafficsurveys&studiesTrafficestima	
tion;Statisticalapplicationsintrafficengineeringanalysis;Parking;Roadintersections-	
Basictrafficconflicts, classification of at-grade intersections, channelization,	
trafficsignals, signsandmarking;RoadSafety	
Module-II:	10L
Transportationplanning:Transportationplanningatdifferentlevels;TransportProjectplanning-	
Planningstudiesandinvestigation; Elements of Urban Transportation Planning;	
TransportDemandAnalysis;PreparationofProjectReport	
Module-III:	10L
RailwayEngineering:Locationsurveys&alignment,	
Permanentwaycomponents, Gauges, Geometric Design, Points & crossings, Stations & Yards,	
Signaling, TrackMaintenance	
Module-IV:	
AirportEngineering:Functionalareasofairports:Runways,Taxiways,,Aprons,Terminalbuildings;	8 L
ClassificationofAirports;Airportsiteselection;DesignofRunway,Runway	
orientation, WindRosediagram; Designof Taxiwayand Terminal Building	

Text/ReferenceBooks:		
Name	Author	Publishers
TransportationEngineering	Vazirani&Chandola	-
TransportationEngineering	KhistyandLalPHI	-
ATextBookofRailway	S.P. Arora &	-
Engineering	S.C.Saxena	
RailwayEngineering	SatishChandra	OxfordUniversitypress
AirportplanningandDesign	S.K.Khanna&M.G.Arora	
AirportTransportationPlanning&	Virendra	GalgotiaPublicationPvt.Ltd.New
Design.	Kumar&SatishCh andra	Delhi

CO-POmapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO ₁	PSO ₂	PSO ₃
										0	1	2			
CO 1	3	3	2	2	•	3	•	•	3	3	3	2	2	2	-
CO 2	3	2	2	2	•	•	2	2	2	•	1	2	2	2	-
CO 3	3	2	2	2	-	1	•	-	1	-	2	2	2	2	-

COURSE NAME: ADVANCED STRUCTURAL ANALYSIS

COURSE CODE: CE702A

CONTACT: 3:0:0

TOTAL CONTACT HOURS: 36 HRS

CREDITS: 3

Pre requisites: Studentshould have knowledge about the subjects Strength of Materials and Structural Analysis-I & II.

Course Objective:

- 1. Learning the concept of Matrix method of analysis
- 2. Learning dynamic analysis of structural frames for windloads.
- 3. Learning the theories of special structures like Plates &Shells.
- 4. Introduction to the advanced theories of elasticity.

Course Outcome:

CO1: Students will understand matrix method of analysis.

CO2: Students will learn to evaluate wind loads on structures.

CO3: Students will learn to analyse plates and shell structures.

CO4: Students will be able to apply knowledge of elasticity in different coordinate systems.

Course contents:

Course contents.	
Module-I:	
Matrix methods of analysis: Matrix formulation of redundant beam analysis (Clapeyrons	10L
three moment theorem. Stiffness and flexibility approaches for beams, simple portal frame,	
trusses by matrix formulation.	
Module-II:	6L
Dynamic analysis of structural frames: Wind analysis of structures by using I.S. Code	
provisions. IS 875-III to be followed for the Wind Load calculations.	
Module-III:	101
Theory of plates and shells: Thin plate analysis. Differential equation of bending under	10L
point and uniformly distributed load, various support systems. Rectangular and circular	
plates. Membrane analysis of thin shell, meridional & hoop stress, shell of revolution,	
cylindrical shell, applications.	
Module-IV:	
Theory of Elasticity: Three dimensional stress and strain analysis, stress - strain	10L
transformation, stress invariants; equilibrium and compatibility equations, boundary	
conditions; Two dimensional problems in Cartesian and Polar coordinates. Beam bending	
problems; Energy principles, variational methods and numerical methods.	

Name	Author	Publishers
Structuralanalysis	PanditGupta	
(AMatrixapproach)		
Advancedstructuralanalysis	DebdasMenon	

COUDSENAME, A DVA NCEDEOLINDA TIONENCINEEDING C															
	1 PO	PU		. PQ 7	PO	PO '	PO.	'PO'	AQ_{Γ}	'POT'	PON	1 PG 1	PSO	PSO	PSO
JO	R\$E	CQD	E;ČE	17 92 E	5	6	7	8	9	0	1	2	1	2	3
CO1	NTA	CT: 3		2	2	3	3	3	2	2	2	2	2	2	3
Cpe	TÂL	CÔN	TÃC	TĤO	URS	:3 ê H	RSC	1	3	3	2	2	3	3	2
CQ3	DPTS	. 3	3	3	3	1	3	2	3	3	3	3	3	2	2
CO 4	3	7. 3	2	2	2	3	2	2	2	3	3	1	2	3	3

Prerequisites:

Basic knowledge of soil mechanics with emphasis on soil behavior, parameters, test procedure. Knowledge on foundation and bearing capacity and settlement analysis.

Preliminaryknowledgeonvibrationanddynamics of structures.

CourseObjective:

Students will gain knowledge on soil exploration and site investigation, with bearing capacity from SPT and SCPT and plate load test data. Students will be able to design beams on elastic foundationand raft Foundation as per IS:2950.

FamiliaritywithdeepFoundation-pile,laterallyloadedpiles by as per

codal provisions and load carrying capacity and settlement analysis.

Studentswillacquireknowledgeonretainingwallandsheetpilestructures.

Familiarity with design of foundation for vibration control and foundation on expansive soils.

CourseOutcome:

CO1: Determinesuitablesoilparameters

CO2: Designandanalyze foundation systems using conventional methods

CO3:DesignabudgetandproposalforaGeotechnicalinvestigation

CO4: Designappropriatefoundationsystemsbasedonground-investigationdataand beableto selectcorrectsoilparameters forthe designs

CO5:Understandlimitations and uncertainties in geotechnical design

Coursecontents: Module-I: SoilExplorationandSiteInvestigation 4L Planningofsoilexplorationprogramme, Fieldtesting, Preparation of borelogandsoilinvestigationreport, Geophysicalexploration:Seismicrefractionsurveyelectricalresistively method **Module-II:** 10L **Shallow Foundations** BearingCapacityfromSPTandSCPT and Plateload Test data, Proportioning of footing based on settlement criteria.Beamsonelasticfoundation:Infinitebeam, Finitebeam, Modulusofsubgradereactionandeffectingparameters. RaftFoundation:SettlementandBearingCapacityanalysis,Analysisofflexibleandrigidraft asperIS2950. **Module-III: 6**L **Deep Foundations** Pile:Tensionpiles,Laterallyloadedpiles:Elasticcontinuumapproach,UltimateloadAnaly sis, Deflection and maximum momentas per IS 2911, Pileload test DrilledShaft:Constructionprocedures,DesignConsiderations,LoadCarryingCapacityand settlementanalysis, Caissons: Types, Sinking and control.

Module-IV:	
Retainingwallsandsheetpilestructures	8 L
Gravity,cantileverandcounterfortretainingwalls:StabilitychecksanddesignSheetPile	
Structures: Cantileversheetpiling, Anchoredsheetpiling: Free and fixed earth support methods of Ana	
lysis,BracedExcavation	
Module-V:	
Designoffoundation forvibration control	4L
Elementsofvibrationtheory, Soil-springsanddamping	
constants, dynamicsoil parameters, Types of Machine foundations, General consideration in designin	
g dynamic bases.	
Module-VI:	4L
Foundationsonexpansivesoils: Problems and Remedies	

Name	Author	Publishers
Foundation Analysis	J.E.Bowels	McGrawHill
&Design		
PrinciplesofFoundationE	B.M.Das	ThomsonBook
ngineering		Thomsonbook
FoundationDesignManual	N. V.Nayak	DhanpatRaiPublicationPvt.Lt
	-	d
FoundationsforMachines:A	Shamsher Prakash, Vijay KPuri	Wiley Series in
nalysisanddesign		GeotechnicalEngineering
AdvanceFoundation	N.Som&S.C.Das	
Engineering		
HandBookofMachineFo	P. Sirinivashalu	TataMcGrawHill
undation	&C.V.Vaiddyanatha	
	n	

CO	PO1	PO ₂	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO2	PSO3
CO1	3	1	1	3	2	1	2	1	2	2	3	3	2	3	3
CO2	3	3	3	2	2	1	2	2	2	1	3	3	3	3	3
CO3	3	1	1	2	2	2	3	3	3	2	3	3	3	2	3
CO4	3	3	3	3	3	2	3	2	2	2	2	3	3	3	3
CO5	3	3	3	3	3	1	2	2	2	2	2	3	2	2	3

COURSE NAME: PAVEMENT DESIGN	
Text Orgrence Banks E702C	
CONTACT: 3:0:0	
TOTAL CONTACT HOURS: 36 HRS	
CREDITS: 3	
Pre requisites: Concept of different types of pavement and its features based on IRC.	
Course Objective:	
i) Introduction of different types pavements and itsperformance	
ii) Introduction of traffic loading in pavementdesign.	
iii) Description of characteristics of pavementmaterials.	
iv) Design of different types of pavement.	
Course Outcome:	
CO1: Understanding the pavement performance under different circumstances.	
COPO: mapping pavement design.	
Were mapping pavement design.	
Course contents:	
MODULE – I:	
Principles of Pavement Design: Types of Pavements, Concept of pavement performance	e, 8 I
Structural and functional failure of pavement, Different types of pavement performance	
Different pavement design approaches.	
Module- II:	6I
Traffic Consideration in Pavement Design: Vehicle types, Axle configurations, Conta	ct
shapes and contact stress distribution, Concept of standard axle load, Vehicle damage factor	
Axle load surveys, Estimation of design traffic.	
Module- III:	6I
Pavement Material Characterization: Identification of different type of materials Field and	
laboratory methods for characterization of pavement materials	
Module- IV:	
Analysis and Design of Flexible Pavements: Selection of appropriate theoretical model f	or 8 I
flexible pavements, Analysis of different layers of flexible pavements based on linear elast	
theory, Different methods of design of flexible pavements, IRC guidelines (IRC-37).	
Module –V:	4I
Analysis and Design of Rigid Pavements: Selection of appropriate theoretical models for rig	id
pavements, Analysis of wheel load stresses, curling, temperature differential, Critical stre	
combinations, Different methods of design of rigid pavements, IRC guidelines (IRC-58)	
Module- VI:	4I
Pavement Overlay Designs: Overlay design as per Indian Roads Congress guidelines (IRC-	
81) Overlay design as per AASHTO-1993 guidelines.	

Name	Author
Principles of Pavement Design	E.J.Yoder and M.W. Witczak,
	Wiley publisher.
Pavement Analysis and Design Y. H. Huang	
Prentice-Hall	
Highway Engineering	Khanna and Justo Nem Chand
IRC-37, IRC-58, IRC-73, IRC-81, IRC-106 and other	
relevant IRC codes	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO ₁	PSO ₂	PSO3
										0	1	2			
CO	3	3	3	2	3	1	1	1	3	3	3	3	2	2	-
1															
CO	3	3	3	2	2	2	1	1	3	2	3	2	2	2	-
2															

COURSENAME:WATERANDWASTEWATERENGINEERINGC

OURSECODE:CE703A

CONTACT:3:0:0

TOTALCONTACTHOURS:36HRSC

REDITS: 3

Prerequisites: FluidMechanics oranequivalent courseinfluidfloworhydraulics.

CourseObjective:

Explore the relationship between the natural water cycle and human water use, and understand the principles ofwaterresourcesplanningandtotalwatermanagement. Describing the physical, chemical, and biological processes necessary for designing and managing drinking water treatment processes and water conveyance and distribution systems and the physical, chemical, and biological processes necessary for designing and managing primary, secondary, tertiary and advanced was tewater treatment processes and solid shandling systems.

CourseOutcome:

CO₁

:Studentswillbeabletosummarizethequalityparameterstypicallyusedtodifferentiatew astewaterandjudgethedifferentclassesoftreated wastewater

CO2:Studentswillbeabletodescribevarioustypesofprocess units

usedforpreliminary,primaryandsecondarytreatmentandexplainhowtheyachievethetargetlevelof treatment

CO3:Studentswillbeabletoidentifyandsummarizeemergingtechnologiesforadvancedwastewatertreatmentandwater recycling

CO4:Studentswillbeabletodifferentiatewaterandwastewatertreatment onsolidwastesmanagement

CO4:StudentsWillbeabletodifferentiateWaterandwasteWatertreatment onsolidwastesmanagement.	
Coursecontents:	
ModuleI:Water qualityparameters,	
Waterqualitystandards;conventionalcontaminantsandemergingcontaminants; Water treatment: Source	4L
selection process, selection of treatment chain, plant	4L
siting, Treatability studies. General considerations for source of drinking water; Waterdemand for ecasting;	
Determination of reservoir capacity; Economics izing of pumping mains/pumping station.	
Module 2: Sources of water, Quality and quantity of surface water, Reservoir storage	
capacity, GroundwaterFlow, GroundwaterYield,	47
InfiltrationGallery,Classificationofdifferenttypesof	4L
wells, Formationofcavityinwells, Measurementofopenwellyield, Tubewells, Differenttypetube	
wells anditsfailure, Artesian well.	
Module-3:PrinciplesofWaterTreatmentprocess:Historicaloverviewofwatertreatment,Considerations for	
layout of treatment plant, Sedimentation, Coagulation & Flocculation	
processes, Disinfection/Chlorination, Water	6L
Softening, Filtration, removal of Dissolved Solids, Fluoride, Ironand	
Manganeseetc. WaterPollutioncontrolanditsLegislation.	
Modulet4: EstimatingtheDesignSewageDischarge-EstimatingSewageDischarge,DesignPeriods	47
forDifferentComponentsofaSewerageScheme,FutureForecastsandEstimatingDesignSewage	4L
Discharge, Variations in Sewage Flow and their Effects.	<u> </u>
Module 5: Hydraulic Design of Sewers and S.W Drain Sections-Difference in the Design of	
WaterSupplyPipesandSewerPipesandSewer Pipes,HydraulicFormulasforDeterminingFlowVelocitiesin	6L
Sewers,	UL
EffectofflowvariationsonVelocityinaSewer,HydraulicCharacteristicsofCircularSewer,QualityandCharact	
eristicsofSewage-Decompositionof Sewage,	
Module6: Disposing oftheSewageEffluents-DisposalbyDilution,DisposalofWastewaters	6L
inRiversandSelf,DisposalonLandforIrrigation,DilutionMethodVsLandDisposalMethod	
Module 7: Municipal Wastewater Treatment Technologies Municipal wastewater treatment Pre-	6L
treatment, Primary treatment, Secondary treatment, Activated Sludge Process, Trickling	
Filters, Oxidation Pond, Waste Stabilisation Pond, Advanced treatments for Sewage., Sludge and its Moisture	
Content, SludgeDigestionProcess,	

Name	Author
WasteWaterTreatmentandWaterManagement:WaterTre	AnamikaSrivastava
atmentandManagement	
INDUSTRIAL WASTE	A.D.Patwardhan
WATERTREATMENT	

CO	PO	PO ₂	PO	PO4	PO	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
	1		3		5					0	1	2	1	2	3
CO1	1	2	3	2	-	-	2	1	3	1	-	-	2	2	-
CO2	2	1	1	-	3	2	-	2	-	2	3	2	2	2	-
CO3	-	1	-	-	2	1	1	-	1	1	1	2	2	2	-
CO4	2	1	-	3	1	2	2	2	-	-	1	1	2	2	-

COURSENAME: HYDRAULICSTRUCTUREC

OURSECODE:CE703B

CONTACT:3:0:0

TOTALCONTACTHOURS:36HRSC

REDITS: 3

Prerequisites:

Basic course on hydraulics with emphasis on fluid behavior pressure losses and application of theories in reals cenariok nowledge of seepage and ground water calculation.

CourseObjective:

StudentswillacquireknowledgeondifferentelementsofHydraulicstructure,diversionheadwork,weirs,barra ges.

Familiaritywithhydraulicdesignofcanals, Ogeefalland crossdrainageworks.

Aquaknowledgeondams, earthendams, methodofconstruction, type, failure causes, see page controlinear then Dam, gravity dam.

Familiarity with spill ways and its requirement capacity.

CourseOutcome:

CO1:Studentswillabletoanalyzeanddesignhydraulicstructuresusingofpractice.

CO2: StudentswillabletoApplythebasicdesignprinciplestoengineeringdesignpractice

CO3: To define basic theories of hydraulic structure design concepts- cross drainage works, canalfallsetc.

CO4: Todefine basic theories of hydraulic structure design concepts - dams, culverts, siphons etc.

CO5: Toidentifyseepageunder hydraulicstructures and protection methods.

Coursecontents:						
Module-1:						
DiversionHeadworks: Necessity, Difference between weir and Barrage, Type of Weirs,						
Selectionofsite, layout and description of each part, Effects of construction						
ofaweirontheriverregime, causes of failure of weirs on permeable foundation and their remedies						
Module-2:	8L					
Theories of seepage and Design of weirs and Barrages: Failure of HydraulicStructuresFoundedon Pervious foundations: i) By piping ii) By Direct uplift, Bligh's creep theory ofseepageflow,Khosla'stheory&conceptofflownets,conceptofexitgradientandcritical exit gradient,Khosla's method of independent variable for determination of pressures andexitgradientforseepagebelowaweiror abarrage,necessarycorrections,examples.						
Module-3:	2L					
Hydraulicstructuresfor canals: Canalfalls, Descriptionofogeefall, Trapezoidal-						
notchfall,Syphonwelldrop.Examples						
Module-4:						
Cross-DrainageWorks:Necessity,types, selectionofasuitabletype(Introductiononly)	2 L					
Module-5:						
Dam (General):Definition, classification of Dams, factors governing selection of						
typeofdam,selectionofsuitable siteforadam.						
EarthenDams:Introduction,TypesofEarthenDams,MethodsofConstruction,Causesof						
failure,DesignCriteria,DeterminationoflineofseepageorphreaticlineinEarthenDam,seepage controlinEarthenDam,Examples.						

Module 6:	6L							
GravityDam:Definition,Typicalcross-section,ForcesactingonGravityDam,Combination of								
forces for design, Mode of failure and criteria for structural stability								
ofGravityDams,Principalandshearstresses.ElementaryprofileofaGravityDam,Concept								
ofHighandlowGravityDam, Examples								
Module 7:								
Spillways: Types, Location, Essential requirements, spillway capacity. Components of spillway,								
EnergyDissipators,Stillingbasins(Indianstandard)								

Name	Author	Publishers
Hydrology& Waterresources	S.K.Garg	KhannaPublication
Engineering		
WaterresourceEngineering	M.C. Chaturvedi	
IrrigationandHydraulic Structure	S.KGarg	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO	PSO	PSO	PSO
										10	11	12	1	2	3
CO 1	2	2	3	•	•	-	•	•	-	•	•	-	2	2	-
CO 2	2	2	3	•	•	-	•	•	-	•	•	•	2	2	-
CO 3	2	1	2	1	•	-	•	•	-	•	•	1	2	2	-
CO 4	2	2	3	1	-	-	•	•	-	-	-	2	2	2	-
CO 5	1	2	3		-	-			-		-	-	2	2	-

COURSENAME: WATERPOLLUTIONANDITS CONTROLCO

URSECODE:CE703C CONTACT:3:0:0

TOTALCONTACTHOURS:36HRSC

REDITS: 3

Prerequisites:

.This course is intended for under graduates and first year graduate students. It is ascience-based course that the students to be comfortable with mathematical calculations, physics and chemistry. Students who do not feel comfortable with these prerequisites will need to do outside self-study to progress satisfactorily through the course.

CourseObjective:

- 1. Thefocusofthecourseistoprovidebasics of airand waterpollution sources, properties, measurement and control
- 2. The course will provide the students the knowledge of currently available air and waterpollution control technologies and devices
- 3. Thetheorybehindthecontrolmethods, design of pollution controldevices and efficiency analysis, as well as their applications.

CourseOutcome:

- CO1: Identify sources, types and quantities of pollutants and determine their impact on the environment
- CO2. Analyse pollutant transport issues in the environment and Development of transport equations
- CO3. Describetheoperational principles of pollution measurement devices and discover their respective application
- **CO4**. Analyseands electap propriate treatment process for specific effluent semerging from industries
- CO5. Analyseands elect and design various pollution control devices

Coursecontents:

Coursecontents	
Module-I:	6L
Water quality parameters, Water quality standards; conventional contaminants and	-
emergingcontaminants; Watertreatment: Sources election process, selection of treatment chain, plants it is	
ng, Treatability studies. General considerations for source of drinking water; Water	
demandforecasting;Determinationofreservoir capacity;Economicsizingofpumpingmains/pumping station.	
Module-II: Sourcesofwater, Qualityand quantityofsurface water, Reservoirstorage capacity, Ground water Flow, Ground water Yield, Infiltration Gallery, Classification of different types of wells, Formation of cavity in wells, Measurement of open well yield, Tube wells, Different typetube wells and and its failure, Artesian well.	6L
Module-III: Principles of Water Treatment process: Historical overview of water treatment, Considerations for layoutoftreatmentplant, Sedimentation, Coagulation&Flocculation processes, Disinfection/Chlorination, WaterSoftening, Filtration, removal of Dissolved Solids, Fluoride , Ironand Manganese etc.	8L
Module-IV: IntroductiontoWaterPollution,ClassificationofPollution,Water pollutantsandsources,Water quality assessment, Effects of oxygen demanding wastewaters Dissolved oxygen and self-purificationof riversorstreams.	4L

Module-V: MunicipalWastewaterTreatmentTechnologiesMunicipalwastewater treatmentPretreatment,Primarytreatment,Secondarytreatment,ActivatedSludgeProcess,	4L
TricklingFilters,OxidationPond,WasteStabilisationPond,AdvancedtreatmentsforSewage.	
Module-VI: IndustrialWastewaterTreatmentTechnologiesClassificationofindustrialeffluentsSpecific treatment process. Treatment of wastes from, Tanneries, Distilleries, Sugar mills,Pharmaceuticalindustries.	4L
Module-	4L
VII: Prevention for Water Pollution, Water Pollution Legislation, Water Management, Local Water Balance R	
eshaping.	

Name
Author
Publishers

1. Environmentalpollutionand C.S.Rao, New AgeInternational,2007 controlengineering,
2. EnvironmentalEngineering, A.P.Sincero,
ADesignApproach, G.A.Sincero PrenticeHallofIndia,2002

CO-	POm	anni	nσ												
	POm PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO	PSO	PSO	PSO
										10	11	12	1	2	3
CO 1	1	2	1	1	2	-	-	3	-	1	1	2	2	2	-
CO 2	2	-	-	2	1	2	3	1	1	2	2	1	2	2	-
CO 3	-	2	1	1	2	2	1	1	2	-	-	-	2	2	-
CO 4	1	1	2	-	-		-	-		1	2	1	2	2	-
CO 5	-	-	1	2	1	1	1	-	2	-	1	2	2	2	-

COURSENAME: HUMANRESOURCEDEVELOPMENT AND

ORGANIZATIONAL BEHAVIOR

COURSECODE:CE704A

CONTACT:3:0:0

TOTALCONTACTHOURS:36HRS

CREDITS: 3

Prerequisites: 10+2

CourseObjective:

To provide an understanding of the basic principles of organisational behaviour so as to acquaint the students with managerial skills and the required inputs with reference to human resource management.

CourseOutcome:

CO1:To define and explain the basic concepts of organizational behaviour and motivation

CO2:To explain the essential concepts of organisational conflicts, resolution of conflicts through negotiation, change management and organisational development.

CO3: To familiarize the various aspects of HR, to deal effectively with people resourcing and talent management and HR functions in an organization.

CO4: To understand the concepts of HRD, its role and importance in the success of organization.

CO5:To develop an understanding towards compensation management and industrial relations.

Coursecontents:

Module-I: 6L Introduction to HRM and Organizational Behaviour (OB): Human resource management (HRM) at work: Definition – HR Challenge –Management process, Changing environment of Human Resource Management: Work force diversity, Technological trends – Globalization, Strategic planning and HR today: Nature of strategic planning – Building competitive advantage – Human resource as a source of competitive advantage, Definition of organizational behavior (OB) and historical development: Definition -Goals of OB - Challenges and opportunities, OB in a global context: The global economy -Facing the international challenge – Behaviour across cultures **Module-II:** 6L Foundation of individual behaviour: Biographical characteristics – Ability – Learning – Implication for performance and satisfaction, Values and attitudes: Importance of values – Types of values – Types of attitude – Attitude and consistency, Perception: Defining perception and its importance – Factors influencing perception, Personality & emotions: Personality determinants – Personality traits – Major personality attributes influencing OB, Emotional intelligence: Defining emotions – The six universal emotions – Emotions and national culture – OB applications, Individual decision making: The rational decision-making process – Improving creativity in decision making – Identifying problems – Ethics in decision making **Module-III: 4**L Understanding and managing group behaviour: Defining & classifying groups: Formal group Informal group – Command group – Task group – Interest group, Basic group concepts: Roles – Norms – Cohesiveness – Size –

Composition – Status, Group decision making: Individual vs. group – Group decision making

techniques, Understanding work teams: Team versus groups – Types of teams – Cross

functional teams – Creating effective teams, Conflict and inter-group behaviour: Definition of conflict – Transitions in conflict thought – The conflict process – Intergroup relations	
Module-IV:	
Recruitment and placement: Nature of job analysis: Definition – Uses of job analysis information, Steps in job analysis, Methods of collecting job analysis information: Interview – Questionnaires –Observation – Quantitative job analysis techniques, Job description and specification: Job identification – Responsibilities and duties – Specification for trained versus untrained personnel, Recruitment and selection process: Introduction – Advertising – Employment agencies – Selection process – Basic testing concepts, Human resource planning and forecasting: Employment planning and forecasting – Factors in forecasting personnel needs – Forecasting supply of inside candidates – Recruiting job candidates	4L
Module-V:	
Training and development:Building employee commitment – Orientation and socialization, Training needs analysis: Task analysis – Performance analysis – Setting training objectives, Training techniques: On-the-job training – Job instruction training – Audiovisual techniques – Programmed learning, Information technology and HR – Training via the internet, Nature and purpose of management development: Definition – Succession planning, Job rotation and management: Coaching – Action learning – Advantage, Performance management & appraisal: Appraisal process – Appraisal methods – Problems and solutions – Role of appraisals in managing performance, Using HR to build a responsive learning organization: HR and systematic problem solving – Learning from experience – Transferring knowledge	4L
Module-VI:	4L
Compensation and retention: Basic aspects of compensation: Compensation at work – Legal	
considerations in	
Compensation, Pricing managerial and professional jobs: Basic compensation elements – Compensating professional employees, Current trends and issues in compensation: Skill-based pay – Broad banding, Comparable worth – Pay secrecy – Inflation and salary compression, Financial incentives: Use of financial incentives – Types of incentive plans, Retirement benefits: Social security – Pension plans – Other retirement benefits, Employee service benefits: Job-related service benefits – Executive perquisites – Law for working women, Retention of employeees, Defination- Strategy- Benifits	
Module-VII:	4L
Labour relations & legislation: The labour movement, unions and the law: Introduction – Why do workers organize – Background – Labour law today, Guaranteed fair treatment and employee discipline: GFTP at work – Fairness in disciplining – Discipline guidelines – Discipline without punishment, Managing dismissals: Definition – Grounds for dismissal – Dismissal procedure, Salient provisions under Indian Factories Act: Labour issues – Factory Act 1948, Industrial Disputes Act: Objective – Applicability, Employees State Insurance Act: Definition – Commencementand application, Workmen's Compensation Act: Definition – Employer's liability for compensation, Payments of Bonous Act: applicability- Eligibility- Benefits.	
Module-VIII:	4 L
Global HRM & Organizational development (OD): Nature of global HRM: Strategic overview – HR and the international business – HR challenges of international business, Multinational and global corporations: Market	
imperfections – International power – Criticisms of multinationals, The expatriate manager in	

multinational corporations: Introduction – Selecting the expatriate manager – Training, OD values and outcomes: Respect for people – Trust and support – Power equalization – Confrontation, Implementation issues in OD and difference in organizational cultures: Improved organizational effectiveness – Greater commitment and involvement – Increased personal and organizational awareness

REFERENCE BOOKS:

- 1. Organizational Behavior-Stephen P. Robbins, Prentice-Hall of India, New Delhi
- 2. Human Resource Management- Gary Dessler, Pearson Education
- 3. Human Resource Management- Cynthia D. Fisher, Schoenfeldt& Shaw, Biztantra, New Delhi

TEXT BOOKS

- 1. K. Aswathappa, Organizational Behaviour, 12thedition, Himalaya, 2016
- 2. Edwin B. Flippo, Personnel Management, 6thedition, TMH, 2013
- 3. P. Subba Rao, Management & Organizational Behavior, 2ndedition, Himalaya, 2014
- 4. C.B. Mamoria& VSP Rao, Personnel Management, 20thedition, Himalaya, 2015

5. S	tephe	n P. Ro	bins,	Organ	isation	al Be	haviou	r. 11th	editic	on, PHI	Learni		arson E	ducatio	n. 2008
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3
										0	1	2			
CO1	1	2	1	1	2	-	-	3	-	1	1	2	2	2	-
CC(2()- <u>P</u> O	map	ping	2	1	2	3	1	1	2	2	1	2	2	-
CO3	-	2	1	1	2	2	1	1	2		-	-	2	2	-
CO4	1	1	2	-	1		-	-		1	2	1	2	2	-
CO5	-	-	1	2	1	1	1	-	2	-	1	2	2	2	-

COURSENAME: HISTORY OF SCIENCE & ENGINEERING

COURSECODE:CE704B

CONTACT:3:0:0

TOTALCONTACTHOURS:36HRS

CREDITS: 3
Prerequisites: 10+2

CourseObjective:

- 1. Students will learn the general course of human history in multiple areas of the world.
- 2. Students will learn to understand the world contextually, that is, to interpret human experiences and the meanings people have given them in relationship to the place and time in which they occurred.
- 3. Students will learn to understand, analyze, and evaluate both evidence and arguments.
- 4. Students will learn to explain how and why important events happen and change over time occurs.
- 5. Students will learn to create knowledge and communicate it to others both orally and in writing.

CourseOutcome:

CO1:Students will understand the Beginning and Development in different field of Science in ancient, medieval, and in modern period

CO2:Students will study the biography of different scientist like Baudhayan, Aryabhtatta, Brahmgupta, Bhaskaracharya, Varahamihira, Nagarjuna etc.

CO3: Student will study the various research organization like DRDO, CSIR, IRC, ISRO etc.

CO4:Students will be able to study the Medical Science of Ancient India (Ayurveda & Yoga)

Coursecontents:	
Module-I:	
Science and Technology- The Beginning: Development in different branches of Science in	8 L
Ancient India: Astronomy, Mathematics, Engineering and Medicine; Developments in	
metallurgy: Use of Copper, Bronze and Iron in Ancient India; Development of Geography:	
Geography in Ancient Indian Literature	
Module-II:	8 L
Developments in Science and Technology in Medieval India:Scientific and Technological	
Developments in Medieval India; Influence of the Islamic world and Europe; The role of	
maktabs, madrasas and karkhanas set up; Developments in the fields of Mathematics,	
Chemistry, Astronomy and Medicine; Innovations in the field of agriculture - new crops	
introduced new techniques of irrigation etc	
Module-III:	10L
Developments in Science and Technology in Colonial and Independent India:Early European	
Scientists in Colonial India- Surveyors, Botanists, Doctors, under the Company's Service;	
Indian Response to new Scientific Knowledge, Science and Technology in Modern India;	
Development of research organizations like CSIR and DRDO; Establishment of Atomic	
Energy Commission; Launching of the space satellites and Development of ISRO	

Module-IV:	ı
Prominent scientist of India since beginning and their achievement: Mathematics and	10L
Astronomy: Baudhayan, Aryabhtatta, Brahmgupta, Bhaskaracharya, Varahamihira,	ı
Nagarjuna; Medical Science of Ancient India (Ayurveda & Yoga): Susruta, Charak, Yoga	İ
&Patanjali Scientists of Modern India: Srinivas Ramanujan, C.V. Raman, Jagdish Chandra	ı
Bose, Acharya Prafulla Chandra Roy, SatyendraNath Bose, MeghnadSaha,	1

REFERENCE BOOKS:

HomiJehangirBhabha and Dr.Vikram Sarabhai

- 1. Binod Bihari Satpathy. "History of Science and Technology in India". Development. Volume 29.
- 2. G. Kuppuram. 1990. "History of Science and Technology in India". South Asia Books.
- 3. M. Bhardwaj. 2010. "History of Science and Technology in Ancient India". Bookwin

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3
										0	1	2			
CO1	3	2	1	1	2	-	-	3	-	1	1	2	2	2	-
CO2	2	3	1	2	1	2	3	1	1	2	2	1	2	2	-
CO3	3	2	1	1	2	2	1	1	2	-	-	1	2	2	-
CO4	3	1	2	-	-		-	-		1	2	1	2	2	-
CO5	2	3	1	2	1	1	1	-	2	-	1	2	2	2	-

COURSENAME: FINITE ELEMENTMETHOD

COURSECODE:CE704C

CONTACT:3:0:0

TOTALCONTACTHOURS:36HRSC

REDITS: 3

Prerequisites: Basicknowledgeofstructuralanalysis fordeterminate and indeterminate structures, trusses and behavior of plates and preliminary knowledge of standard structurals of tware and computer uses knowledge of matrices algebra.

CourseObjective:

Students will gain knowledgeon finiteelementanalysis, finiteelementformulation techniques, element properties and numerical integration. Students will be able to formulate stiffness matrices and analysis of continuous beamands impleplane frame. To acquire knowledgeon FEM for two dimensional analysis, FEM for plates and introduction of standard FEM incivilengineering.

CourseOutcome:

CO1:Obtainanunderstandingofthe fundamentaltheoryoftheFEAmethod.

CO2:Developed the ability to generate the governing FE equations for systems governed by partial differential equations.

CO3

:Makethestudentstoapplytheknowledgeofmathematics, scienceandengineering to do the analysis of simple and complexe lastic structures using the finite element analysis.

CO4:Learnandapplyfiniteelementsolutionstostructural,thermal,dynamicproblemtodevelop the knowledgeandskills neededto effectivelyevaluatefiniteelementanalysis

Coursecontents:

Coursecontents.					
Module-I:[3L+1T]					
IntroductiontoFiniteElementAnalysis:Introduction,BasicConceptsofFiniteElementAnalysis,Step					
sinFinite ElementAnalysis,FundamentalconceptsofElasticity					
Module-II:[3L+1T]	4L				
Finite Element Formulation Techniques: Virtual Work and Variational					
Principle,GalerkinApproach,					
DisplacementApproach, Stiffness Matrix and Boundary Conditions					
Module-III:[6L+2T]	6L				
Element properties:Conceptsofshape functions:					
NaturalCoordinates, one dimensional, Triangular, Rectangular Elements					
IsoparametricFormulation:IsoparametricElements,StiffnessMatrixofIsoparametric					
Elements, Numerical Integration: One Dimensional, Two Dimensional					
Module-IV:[9L+3T]]					
Formationofstiffness matricesandanalysisofTruss,ContinuousBeamandSimplePlaneFrame.	10L				

Module-V:[4L+2T]	
FEMfortwodimensionalanalyses:Constant	4L
StrainTriangle,LinearStrainTriangle,RectangularElements	

IntroductiontoFiniteElementinE	Chandrapatla&Belegundu	PearsonEducation
ngineering		
AFirstCourseinFiniteElementMethod	D. L.Logan	Thomson
Surveying:	Bannister, Raymond&	PearsonEducation
	Baker	
ConceptsandApplications	R.D.Cooket.al	WileyIndia
ofFiniteElementAnalysis		
FiniteElementAnalysis—	C.S.Krishnamoorthy	TataMcgraw Hill
TheoryandProgramming		
Matrix,FiniteElement,ComputerandS	M. Mukhopadhyay	NewDelhi, India
tructuralAnalysis	OxfordandIBHPublishingC	
•	o.Pvt.	
	Ltd.	
FiniteElementProcedures	K.J.BathePHI,	NewDelhi, India

Module-VI:[3L+1T]	4L
FEMforPlates:IntroductiontoPlateBendingProblems,FiniteElementAnalysisofThinPlate	
Module-VII:[3L+1T]	4L
Introductionto applicationofstandardFEMsoftwareincivilEngineering	

CO- PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	2	2	2	3	3	2	2	3	3	3	2	3	3	3
CO2	3	3	3	3	2	2	2	3	2	3	3	3	3	2	3
CO3	3	3	3	3	2	3	3	2	3	2	2	2	2	3	2
CO4	2	2	2	3	2	2	2	2	1	1	2	1	1	3	2

COURSENAME: ECONOMICS FOR ENGINEERS C

OURSECODE: HU(CE)705

CONTACT:3:0:0

TOTALCONTACTHOURS:36HRSC

REDITS: 3

Prerequisites:NIL

CourseObjective:

- TodevelopdecisionmakingskillsusingbasiceconomicPrinciples
- Toeducatethestudentsinevaluating variousBusinessProjects

CourseOutcome:

CO1: Tolearntheidentification of various uses for scares resources.

CO2: To understand keye conomic concepts and implement the minreal life problems.

CO3:Todesignsustainableandeffectiveeconomic models in reallife projects.

CO4:Toapplycriticalthinkingskillsinanalysingfinancialdataandtheirimpacts.

Coursecontents:

Module– 1:Introduction	3L
Economics-Nature, Scope, Uses, Micro Economics and Macro Economics.	
Module- 2Theory of Demandand Supply	5L
Conceptofdemand, Determinants of demand, Individual and Market Demand, Law of demand and its	
Exception; Concept of Supply, Shift in Demand and Supply Curve, Movement along the	
demandandsupplycurve, Determinants of equilibrium price and quantity, Elasticity of Demandand	
Supply.	
Module- 3Theory of Production and Costs	ОТ
ConceptofProductionfunction,typesofProductionfunction,LawsofreturntoscaleandvariableProportio	8L
n,Basicunderstandingofdifferentmarkets,Determinationofequilibriumpriceunder	
perfectcompetition&monopolyinshortrunandlongrunPriceDiscrimination.	
Module-4MacroeconomicAggregatesandConcepts	4L
ConceptsofNationalIncome,GDP,GNP,ConceptofBusinessCycle.	
Module-5Inflation	41
Concept, Causes and Remedies of Inflation and Unemployment, basic concept of Philips Curve	1

Module-6-TheoryofInvestment	4L
Basic conceptofInvestment, BusinessFixedInvestment, AcceleratorTheory, Tobin'sq	
Module -7 Accounting	4L
BasicconceptofJournal, PreparationofIncomeStatementandBalanceSheet	
Module–8Cost VolumeProfit Analysis	4L
Contribution, P/V Ratio, Break-Even Point, Margin of Safety, Short term decision making: Make	
orBuy,Shut-downpoint,ExportPricing,OpportunityandSunkcost.	

- $1.\ Economics, by Lipsey and Chrystal, Oxford University Press$
- 2. ModernAccountancy,vol.-I-

,byHanif&Mukherjee,TataMgrowHillReferences:

- 1. ModernEconomicTheory,byK.K.Dewett,S.Chand
- 2. PrinciplesofEconomics,byH.L.Ahuja,S.Chand
- 3. EngineeringEconomics,byR.PaneerSeelvan,PHI
- 4. EconomicsforEngineers,byDr.ShantanuChakraborty&Dr.Nilanjanasingharoy,LawPointPub
- 5. MacroEconomics,byMankiw,MacmillanLearning

	PO1	PO2	PO	PO4	PO5	PO	PO	PO8	РО	PO9	PO1	PO1	PO12	PSO1	PSO2	PSO3
			3			6	7		8		0	1				
CO1	2	2		-	2	3	3	i	2	3	2	2	2	2	2	
CO2	2	2	3	2	3	-	-	-	-	-	3	2	2	2	2	
CO3	2	-	3	2	-	3	-	-	2	-	-	-	2	2	2	
CO4	-	2	2	3	2	3	-		-	-	3	2	-	2	2	-

COURSE NAME: MAJOR PROJECT-I

COURSE CODE: CE781

CONTACT: 0:0:8

CREDIT: 4

Prerequisite: Science and Engineering knowledge

It is intended to start the project work early in the seventh semester. The poroject problem is expected to be completed in the seventh semester and the demonstration and report writing will be carried out in the eighth semester. The students in a group of 4 to 6 works on a topic are to be approved by the head of the department under the guidance of a faculty member. The students prepare a comprehensive project report after completing the work to the satisfaction of the supervisor to be submitted at the end of the semester. The progress of the project is evaluated by a committee may be constituted by the Head of the Department. The project work is evaluated based on oral presentation and the project report may jointly by external and internal examiners constituted by the Head of the Department.

COURSE NAME: INTERNSHIP

COURSE CODE: CE782

CREDIT: 1.0
Course contents:

Collective Data from 3rd to 7th Semester (Summer/Winter Training during Semester Break & Internship should be done after 5th Semester to 7th Semester). All related certificates to be collected by the training/internship coordinator(s).

COURSE NAME: TECHNICAL SEMINAR PRESENTATION

COURSE CODE: HU(CE)791

CONTACT: 0:0:1

TOTAL CONTACT HOURS: 12

CREDIT: 0.5

Prerequisite: English language

Course Contents:

Forms of Technical Communication: Technical Report: Definition & importance; Thesis/Project writing: structure & importance; synopsis writing: Methods; Technical research Paper writing: Methods & style; Seminar & Conference paper writing; Expert Technical Lecture: Theme clarity; Analysis & Findings; 7 Cs of effective business writing: concreteness, completeness, clarity, conciseness, courtesy, correctness, consideration, C.V./Resume writing; Technical Proposal: Types, Structure & Draft.

Technical Presentation: Strategies & Techniques: Presentation: Forms; interpersonal Communication; Class room presentation; style; method; Individual conferencing: essentials: Public Speaking: method; Techniques: Clarity of substance; emotion; Humour; Modes of Presentation; Overcoming Stage Fear; Audience Analysis & retention of audience interest; Methods of Presentation: Interpersonal; Impersonal; Audience Participation: Quizzes & Interjections.

Technical Communication Skills: Interview skills; Group Discussion: Objective & Method; Seminar/Conferences Presentation skills: Focus; Content; Style; Argumentation skills: Devices: Analysis; Cohesion & Emphasis; Critical thinking; Nuances: Exposition narration & Description; effective business communication competence: Grammatical; Discourse competence: combination of expression & conclusion; Socio-linguistic competence: Strategic competence: Solution of communication problems with verbal and nonverbal means.

COURSE NAME: SKILL DEVELOPMENT- TECHNICAL ARTICLE WRITING

CODE: HU(CE)792

CONTACT HOURS: 0:0:1

CREDIT: 0.5

Coursecontents:

Writing a Technical Report/Article

- (a)Organizational Needs for Reports and types
- (b)Report Formats
- (c)Report Writing Practice Sessions and Workshops

	4 th Year8 th Semester													
Sl.No.	Broad Category	Category	Course Code	Course Title	Н			week	Credits					
				A MATIODA	L	L T P T		Total						
				A.THEORY		•								
1	ENGG	Major	CE801	D. Structural Dynamics and Earthquake Engineering E. Public Transport System F. Ground Improvement Techniques	3	0	0	3	3					
2	ENGG	Major	CE802	D. Bridge Engineering E. Pre-stressed Concrete F. Air & Noise Pollution and Control	3	0	0	3	3					
3	ENGG	Minor	CE803	D. Project Management E. Cyber Law and Ethics	3	0	0	3	3					
4	HUM	Ability Enhancemen t Course	HU(CE)801	Principles of Management	2	0	0	2	2					
				B.PRACTICAL										
5	PROJECT	Major	PR881	Major Project-II	0	0	12	12	6					
6	ENGG	Major	CE882	Grand Viva	0	0	2	2	1					
	To	talof Theory	,PracticalandN	MandatoryActivities/Courses				25	18					

^{*&#}x27;Mandatory Additional Requirement'(MAR) activities have to be carried out as per university guidelines.

COURSENAME:STRUCTURALDYNAMICS&EARTHQUAKEENGINEERINGC

OURSECODE:CE801A

CONTACT:3:0:0

TOTALCONTACTHOURS:36HRSC

REDITS:3

Prerequisites: Studentshouldknowledgeaboutearthquake, retrofitting and dynamics of the structure

 $\label{lem:courseObjective:Studentshouldbeabletodealdynamic behaviour and dynamics of structure as well as earth quakeresistant design properly.$

CourseOutcome:

CO1 : Student will be able know Degrees of freedom, Undamped single degree freedom system, Dampedsingle degreefreedomsystem

CO2: Student will be able to know about Response of single degree freedom system due to harmonicloading

CO3:StudentwillbeabletoknowaboutDuhamel'sIntegral,Responseduetoconstantforce,Rectangular load, Introduction to numerical evaluation of Duhamel's integral of undamped system. CO4:Student will able to know about Fundamentals: Elastic rebound theory, Plate tectonics, Definitions ofmagnitude,Intensity,Epicenteretc.,Seismographs,Seismiczoning,ResponseofSimpleStructuralSystems CO5:Studentwillabletoknowabout Principles ofearthquakeresistantdesign

Coursecontents:	
Module-I:	7L
Theoryofvibrations: Degrees of freedom, Undampedsingledegree freedom system,	
Damped single degree freedom system, Natural frequency, modes of vibration, Introduction	
tomultiple degreefreedomsystem	
Module-II:	7 L
Responseofsingledegreefreedomsystemduetoharmonicloading: Undampedharmonicexcitatio	
n,DampedHarmonicexcitation	
Module-III:	71
ResponseduetoTransientloading:Duhamel'sIntegral,Responseduetoconstantforce,	7 L
Rectangularload,IntroductiontonumericalevaluationofDuhamel'sintegralofundampedsystem.	
Module-IV:	7L
Elementsofseismology:Fundamentals:Elasticreboundtheory,Platetectonics,Definitions	
of magnitude,Intensity,Epicenteretc., Seismographs,Seismic zoning,Response of	
SimpleStructuralSystems	
Module-V:	8L
Principles of earthquakeresistant design: Terminology, General principles and	
Designcriteria, Methods of Analysis, Equivalent lateral force method of Analysis for	
multistoriedbuildingasperIndianStandardCodeofPractice,IntroductiontoResponseSpectrumMet	
hod,	
FundamentalconceptsofDuctile detailing	

Name	Author	
	Publishers StructuralDyn	amics (Theoryand
	MarioPaz	
	CBSPublishersandComp	utation)
	Distributor	
DynamicsofStructure (Theoryand	A.K.Chopra	Pearson
EducationApplicationtoEarthquakeEngine	ering)	
ElementsofEathquakeEngineering	JaiKrishna, A.R.	SouthAsianPublishers
	ChandrashekharandBrij	
	esh	
	ChandraN.C.SinhaandS	
	.K.Roy	

EarthquakeResistantDesign D.J.Dowrick

JohnWilley&SonsIS1893(Part1):2002,IS3920,I

S4326-

BureauofIndianStandard CO-POmapping:

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	2	2	3	3	1	2	3	3	3	3	2	2	3
CO ₂	3	3	3	2	2	2	3	1	3	2	3	2	2	3	3
CO ₃	2	2	3	2	1	2	3	3	2	3	2	2	3	2	2
CO4	3	3	2	3	2	2	1	2	3	2	2	2	3	3	3
CO5	3	3	3	3	3	1	1	1	3	3	2	3	2	2	3

COURSENAME:PUBLICTRANSPORTSYSTEMC

OURSECODE: CE801B

CONTACT:3:0:0

TOTALCONTACTHOURS:36HRSC

REDITS: 3

Prerequisites: BasicknowledgeofCivilEngineering

CourseObjective:

- Explaindifferenttransitmodes,routingmanagementactivitiesincludingdemandanalysis.
- Provide information on functioning, designing and scheduling of transitter minal design, fleet management, and cost benefit analysis and bustransit operation.
- $\bullet \qquad Provide in formation on loading and unloading transit platforms, traffic management techniques and IPTs ervice improvements.$
- Explaindemandmanagementtechniques, intersection managementtechniques, planning for pede strian, bicycleandparking management.

CourseOutcome:

CO1: Able to remember transit modes, management activities and demand analysis.CO2: Capable of designing transit terminal units, fleet management and cost analysis.CO3: Capable of planning and scheduling transit terminal platform for loading and unloading, selecting suitable traffic management techniques.

CO4:Capableofselectingdifferent demandmanagement

techniques, intersection management techniques and small area management.

Coursecontents:								
Module 1:								
System and Technologies: Urban passenger transportation modes, transitclassifications	8 L							
anddefinitions, theoryofurbanpassengertransportmodes,railtransit,bus transit,Paratransitand								
ridesharing, designing for pedestrians, trends in transitridership and use of different modes.								
Module 2:								
Comparing Alternatives: Comparing costs, comparative analysis, operational	10L							
andtechnologicalcharacteristicsofdifferentrapidtransitmodes, evaluating								
rapidtransit								
Planning: Transportationsystemmanagement, systemandservice planning, financing public transpo								
rtation,managementofpublictransportation,publictransportationmarketing.								
Module 3:								
TransitSystemEvaluation: Definition of quantitative performance attributes, transitlane capacity,	8 L							
waycapacity, station capacity, theoretical and practical capacities of major transit								
modes, quantification of performance								
Module 4:								
City Traffic: Classification of transportation systems, conventional transportation	10L							
systems, unconventional transportation								
systems, prototypes and tomorrow's solutions, analysis and interpretation of information on transport								
ationsystems, perspectives of future transportation.								

Name	Author	Publishers
PublicTransportation	GeorgeE.GrayandL esterA.Hoel	PrenticeHall, NewJersey
UrbanPublicTransportation SystemsandTechnology	VukanRVuchic	PrenticeHallInc.,NewJersey
CityTraffic-ASystemsDigest'	HorstR.Weigelt,Rainer E.Gotz,Helmut H.Weiss	VanNostrandReinhold Company,New York
MetropolitanTransportation	JohnW. Dickey	TataMcGraw-
Planning'		HillPublishingCo.NewDelhi

	PO1	PO2	PO ₃	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO	PO1	PSO ₁	PSO ₂	PSO3
										0	11	2			
CO1	2	2	2	3	3	-	•	•	1	•	-	2	2	2	
CO2	3	2	2	2	1	-	-	-	-	•	-	2	2	2	•
СОЗ	2	2	2	2	2	-	-	-	-	-	-	1	2	2	
CO4	3	2	2	3	2	-	-	-	-	-	-	3	2	2	-

4L

6L

COURSENAME:GROUNDIMPROVEMENTTECHNIQUESCO URSECODE: CE801C CONTACT:3:0:0 TOTALCONTACTHOURS:36HRSC REDITS :3 **Prerequisites:** KnowledgeofBasicSoilMechanics/FundamentalGeotechnicalEngineering **CourseObjective:** To introduceen gineering properties of soft, weakand compressibledeposits, principles of treatment for granular and cohesives oils and various stabilization techniques. • Tobringoutconcepts of reinforced earth. • Applications of geotextiles invarious civilengineering projects. **CourseOutcome:** CO1:Understandthedifferent groundimprovementtechniques. CO2:Understand themethodsofstabilisation CO3:Understandthemethodsandpropertiesofreinforcedsoil **CO4:**Understand thebasicconcepts of geosynthetics CO5:Understandthebasicconceptofconsolidationofsoil CO6:Understand theconceptofshearstrengthin soil **Coursecontents:** Module-I: Introduction: Definition, Needfor Ground Improvement, Different 4L typesofproblematicsoils, Emerging trends in ground Improvement. **Module-II: 6L** Mechanicalstabilization: Shallow and deep compaction requirements, Principles and methods of compaction, Shallow compaction and methods. **Properties** soilandcompactioncontrol, Deepcompaction and Vibratory methods Dynamic compaction. **Module-III:** 6L Hvdraulicmodification: Ground Improvementbydrainage, Dewatering methods. Design of dewatering systems, Preloading. Vertical drains, vacuum consolidation, Electrokineticdewatering, designand construction methods. **Module-IV:** Modificationbvadmixtures: Cementstabilization and cement columns. Limestabilization 6L andlimecolumns. Stabilization using bitumen and emulsions, Stabilization using industrial wastes Construction techniques and applications. **Module-V: Grouting:**Permeationgrouting,compactiongrouting,jetgrouting,differentvarietiesofgroutmateri **4**L

als, grouting under difficult conditions.

piles, designmethods, construction techniques.

Insitusoiltreatmentmethods: Soil nailing, rockanchoring, micro-

Casestudies: Casestudiesofgroundimprovement projects.

Module-VI:

Module-VII:

Name	Author	Publishers
FoundationAnalysis&Design	J.E.Bowels	McGrawHill
PrinciplesofFoundation	B.M.Das	ThomsonBook
Engineering		
FoundationDesignManual	N.V.Nayak	DhanpatRaiPublicationPvt.L
		td
Construction and	R.M.Koener	McGrawHill
Geotechnicalmethodsinfoundation		
engineering		
Technologyintunnellinganddamco	A.V.Shroff.&D.L.S	OxfordandIBHPublishingC
nstruction	hah	o.Pvt.Ltd
ReinforcedEarth	TSIngold	ThoamTelford
DesigningwithGeosynthetics	RMKoerner	PrenticeHall

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	3	2	1	2	2	3	2	3
CO2	3	3	1	2	3	2	1	1	2	3	1	3
CO3	3	3	2	2	3	3	3	3	1	1	2	3
CO4	3	3	1	3	1	2	2	1	2	1	1	3
CO5	3	3	1	1	2	1	2	2	3	2	2	3
CO6	3	2	3	1	2	2	2	1	2	2	1	1

COURSENAME: BRIDGEENGINEERINGC

OURSECODE:CE802A

CONTACT:3:0:0

TOTALCONTACTHOURS:36HRSC

REDITS:3

Prerequisites: Studentshouldhaveknowledge

abouthowtosolveanalysisofstructuralproblem,reinforcedconcretestructuredesignandsteelstructuredesign

CourseObjective: Studentwillbeabletoknowaboutthebridgesandperformanalysisof differenttypesofbridgesandalsoabletodesignofreinforcedconcreteandsteelbridgesofdifferenttypes.

CourseOutcome:

CO1: Exhibit the knowledge of the history of bridges and know about the IRC guidelines.

CO2:DesigntheRCCbridgesofdifferenttype.

CO3:DesigntheBalancedCantileverBridges.

CO4: Designthesteelbridgesofdifferent type.schedule,and safetyrequirements.

CO5: Exhibit the knowledge of Composite Bridges and Cable Stayed Bridges.

Commencentante	
Coursecontents:	
Module-I: [4L]	4 L
Introduction: Definition and Basic Forms, Component of bridge, classification of bridge,	
shorthistoryofbridgedevelopment.I.R.CLoads.AnalysisofIRCLoads,Impactfactors,Otherloa	
dstobeconsidered,ImportanceofHydraulicfactorsinBridgeDesign.	
Module-II:[4L]	4L
Reinforcedconcretesolidslabbridge:Introduction,Generaldesignfeatures,Effectivewidthm	
ethod.Simplysupported and cantilever SlabBridge,analysisand design.	
Module-III:[3L]	
BoxCulvert: Introduction, Designmethod and Design example.	3L
Module-IV: [4L]	4L
BeamandSlabBridges:Introduction, Designofinterior	
panelofslab.Pigeaudsmethod,Designoflongitudinalgirder,Calculationoflongitudinalmoment,desi	
gnexample.	
Module-V:[3L]	3L
BalancedCantileverBridges:GeneralFeatures,Arrangementofsupports,	
designfeaturesArticulation,Designexample.	
Module-VI: [3L]	3L
SteelBridges: Generalfeatures, types of stress, Designexample.	
Module-VII:[3L]	3L
PlateGirderBridge: Elements, design, lateral bracing, Box-girder Bridges.	
Module-VIII:[6L]	6L
CompositeBridges:Generalaspects, methodofconstruction,	
analysisofcompositesection, shear connectors, design of composite beam.	
Module-IX: [6L]	6L
CableStayedBridge:Generalfeatures,Philosophyofdesign.	

Name	Author	Publishers
Bridgeengineering	Krishnaraju	-
Principle&PracticeofBridgeE	S.P.Bindra	DhanpatRaiPub
ngineering		
Essentialsofbridgeengineering	D.J.Victor	-
Bridgeengineering	Ponnuswamy	-
DesignofBridgeStructures	T.R.Jagadesh,M.A.J	-
	ayaram	
Designofconcrete bridges	Aswani, Vizirani	-
	,Ratwani	
Designofsteelstructures	Arya&Ajmani	-
ConcreteStructures	Vaziram&Ratwani	-
Structuresdesignanddrawing	Krishnamurthy	-
RelevantIS&IRCcodes	-	-

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	3	2	-	2	2	1	-	3	3	2	2	2	-
CO ₂	3	3	3	3	-	2	-	-	-	2	2	2	2	2	-
CO3	3	3	3	2	-	-	-	-	-	2	2	2	2	2	-
CO4	3	3	3	2	-	2	-	3	-	-	2	2	2	2	-
CO5	3	3	3	2	-	-	-	-	-	1	2	2	2	2	-

COURSENAME:PRESTRESSEDCONCRETEC

OURSECODE:CE802B

CONTACT:3:1:0

TOTALCONTACTHOURS:36HRSC

REDITS:3

Prerequisites:

Basic understanding of R.C.C. design and analysis with fundamental knowledge of limit state and the control of the control o

behaviore free Cowith basick nowledge of structural analysis

Course Objective: Studentswill gainknowledgeon pre-stressedconcretebehavioranalysismethods, stress calculation, losses, limit state design criteria and methods. student will be familiarwithanchoragezone stressinpost tensionmember. Basicknowledge oncomposite construction of pre-stressed and insituconcrete. Preliminary idea on partial pre-stressing and nonstressed reinforcement.

CourseOutcome:

- **CO1**: The student will get basic concept of pre-stressing materials and procedures.
- CO2:Detailunderstandingonlossesinprestressed
- **CO3**:Become familiar with ISCodes on Prestressing.
- **CO4**: Understand designofvariouspartsofaprestressed structureformanykind ofloading.
- **CO5:**DetailIdeaonanchoragezoneand compositemembers

Coursecontents:

Courseontenes.	
Module-1: [6L] Introduction of Fre-stressed concrete: Materials, pre-stressing system, analysis of prestressed Rending stress losses Sheer and torsion all resistances design of sheer	6L
prestressand Bending stress, losses Shear and torsion al resistance: design of shear	
reinforcement, design of reinforcement fortors ion Shear and bending Deflections of pre-	
stressedconcrete	
members:Importance, factors,shorttermandlongtermDeflection	
Module-II:[6L]	6L
Limitstatedesigncriteria:Inadequacyofelastic andultimate	
loadmethod, criteria for limit states, strength and service ability. Design of sections for	
flexure:methodsbyLinandMagnel	
Module-III:[6L]	6L
Anchorage Zonestressesinposttensionedmembers: Stressdistributioninend block, anchorage	OL
zonereinforcement	
Module-IV: [6L]	6L
Compositeconstructionofpre-stressedandin-situconcrete: Types, analysis of stresses	
StaticallyIndeterminatestructures:advantagesofcontinuousmember,effectofprestressing,methods	
ofachieving continuity and method of analysis of secondary moments	
Module-V:[6L]	6L
Pre-stressedconcretepolesandsleepers: Designofsections forcompression and bending	
Module-VI: [6L]	6L
Partialpre-stressingandnonpre-stressedreinforcement	

Name	Author	Publishers		
Prestressed Concrete	NKrishnaRaju	McGrawHill		
	-			
DesignofPrestressedStructures	T.Y.LinandN.H.Burns	WileyEasternLtd		
FundamentalsofPrestressed Concrete	N.C.Sinhaand S.K.Roy	-		
Prestressed Concrete	S.Ramamurthan	-		

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO	3	2	2	-	-	-	1	-	-	-	-	-	2	2	-
1															
CO	3	2	1	2	-	-	1	-	-	-	-	-	2	2	-
2															
CO	-	2	1	-	1	3	1	-	-	-	-	-	2	2	-
3															
CO	2	2	3	2	2	-	1	-	-	-	-	-	2	2	-
4															
CO	2	2	1	2	2	-	1	-	-	-	-	-	2	2	-
5															

COURSENAME: AIR & NOISE POLLUTION & CONTROLCO

URSECODE:CE802C CONTACT:3:0:0

TOTALCONTACTHOURS:36HRSC

REDITS: 3

Pre requisites: Basic knowledge of environment pollution and its causes with preliminaryknowledge ofchemistryknowledge ondifferentimpurities are pollutants of air.

Course Objective: Students will acquire knowledge on air pollution, sources and control ofparticulates, gaseous pollutantand self cleansing properties of the environment. Familiarity withnoise pollution, measurement, sources and control. Acquire knowledge on global environmentalissues like ozone depletion, acidrain, greenhouse effect.

Familiarity with administrative control on environment with function of State and Central PollutionControlBoardsandclearanceprocessforindustriesandinfrastructuralprojects.

Someknowledgeon

environmental laws and Environmental Impact Assessment.

CourseOutcome:

CO1:Tolearnabouttheairpollutants, sourcesanditseffects.

CO2: Tohaveaclear understandingontheairqualitystandards and its techniques.

CO3: To determine the fluid resistance for organic materials.

CO4:TofindthePropertiesofair pollutionanditscontrolmeasures.

CO5:Tolearnabouttheeffectsand thesourcesofnoisepollution.

1	
Coursecontents:	
Module-I:	6L
Introduction: Environment. Pollution, Pollution control	
Module-II:	6L
Air Pollution : AirPollutants: Types, Sources, Effects; AirPollution Meteorology: LapseRate,	
Inversion, Plume Pattern; Air Pollution Dispersion Model: Point Source Gaussian	
PlumeModel, Stability Classes, Stability Charts, Design of Stack Height.	
Module-III:	6L
AirpollutionControl:Selfcleansingpropertiesoftheenvironment;Dilutionmethod;EngineeredCo	OL
ntrolofAirPollutants:Controloftheparticulates,ControlofGaseous	
Pollutants, ControlofAir pollutionfromAutomobiles.	
Module-IV:	
	5L
Noise Pollution: Definition; Sound Pressure, Power and Intensity; Noise	
Measurement:Relationships among Pressure, Power and Intensity, Levels, Frequency	
Band, DecibelAddition, MeasuresofcommunityNoisei.e. L _N , L _{eq} , L _{dn} ,, L _{NP} ;Sources,	
;Effects;Control.	
Module-V:	4L
GlobalEnvironmentalIssues:OzoneDepletion,AcidRain,GlobalWarming-GreenHouseEffects	
S T T T T T T T T T T T T T T T T T T T	
Module-VI:	5L
	3L
Administrative Control on Environment: Functions of Central and State Pollution	
ControlBoards; Environmental Clearance Process for Industries and Infrastructural Projects	

Module-VII:

4L

EnvironmentalLaws: WaterAct, AirAct, MotorVehicleAct

Text/ReferenceBooks:

Name	Author	Publishers
EnvironmentalEngineering	S.K.Garg	
EnvironmentalEngineering	P.V.Rowe	

CO	PO	PO ₂	PO	PO4	PO	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
	1		3		5					0	1	2	1	2	3
CO1	1	1	3	2	1	3	3	3	1	3	2	2	2	2	2
CO2	2	3	3	3	2	3	3	2	2	3	2	2	3	3	2
CO3	3	3	3	3	3	2	3	1	2	1	2	3	3	3	3
CO4	3	3	3	3	2	1	3	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	2	3	2	3	3	3	2	3

COURSENAME:PROJECT MANAGEMENT

COURSECODE: CE803A

CONTACT:3:0:0

TOTALCONTACTHOURS:36 HRS

CREDITS: 3

Pre requisites: 10+2

Course Objective:

Understand the basic concepts of project management.

Appraise the project using appropriate appraisal techniques.

Design and implement project by considering risk and its evaluation.

Learn the process of project planning and execution.

CourseOutcome:

CO1:Learn the techniques of Mathematical and conceptual modeling of real life decision making problems, including the use of modelling and computational tools as well as analytic skills to evaluate the problems.

CO2: Apply various models in real life case studies and learn about decision making.

CO3:Develop decision making skills under challenging circumstances through the concept of optimization

Coursecontents:	
Module-I: Introduction to Project Management: What is a project? Evolution of project management, the need of project management, Where is project management appropriate? Characteristics of projects, Characteristics of project management, Projectsin contemporary organizations, Project life cycle.	6L
Module-II: Project Selection and Appraisal: Brainstorming and concept evolution, Project selection and evaluation, Selection criteria and models, Types of appraisals, SWOT analysis, Cash flow analysis, Payback period, and Net present value	6L
Module-III: Project Organization and Planning: Project manager, Cross-functional team, Dedicated project organization, Influence project organization, Matrix organization, Advantages and disadvantages of project organizations, Selection of project organization, Work Breakdown Structure (WBS), Integration of project organization and WBS, WBS and responsibility matrix.	6L
Module-IV: Project Scheduling and Resource Management: Gantt chart, Milestone chart, Network techniques: PERT and CPM, AON and AOA representation, Three time estimates, Using probability distributions for time computation, Probability of project completion, Time scale version of network, Early start and late start schedules, Resource allocation, Resource loading and leveling, Constrained resource scheduling, Multi-project scheduling and resource allocation, Crashing a project.	8L
Module-V: Computerized PM: Computerized PMIS, Choosing software for project management, using software for project management.	4L
Module-VI: Case Studies on Project Management: Modern cases in project management.	6L

Reference Books

- 1. Project Management for Business and technology: Principles and Practice, John M. Nicholas, Pearson Prentice Hall, New Delhi, 2005.
- 2. A Guide to the Project management Body of Knowledge (PMBOK Guide) 5 th Edition, PMI.
- 3. Project Management-Case Studies, Harold Kerzner, John Wiley & Sons, New Jersey, 2006.
- 4. Project and Production Management, A course by National Programme on Technology Enhanced Learning (NPTEL), Arun Kanda and S. G. Deshmukh, IIT Delhi, 2005.
- 5. Projects: Preparation, Appraisal, Budgeting and Implementation, Prasanna Chandra, Tata McGraw Hill Publishing Company Ltd., New Delh

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	3	2	1	2	2	3	2	3
CO2	3	3	1	2	3	2	1	1	2	3	1	3
CO3	3	3	2	2	3	3	3	3	1	1	2	3

COURSENAME: CYBER LAW AND ETHICS

COURSECODE: CE803B

CONTACT:3:0:0

TOTALCONTACTHOURS:36HRS

CREDITS: 3

Pre requisites: 10+2

Course Objective:

• To make the students understand the types of roles they are expected to play in the society as practitioners of the civil engineering profession •

To develop some ideas of the legal and practical aspects of their profession

CourseOutcome:

CO1:Understand the importance of professional practice, Law and Ethics in their personal lives and professional careers.

CO2:Learn the rights and responsibilities as an employee, team member and aglobal citizen

Coursecontents:

Module-I:	6L
Introduction: Basics of Law, Understanding Cyber Space, Defining Cyber Laws, Scope and	
Jurisprudence, Concept of Jurisdiction, Cyber Jurisdiction, Overview of Indian Legal System,	
Introduction to IT Act 2000, Amendments in IT Act, Cyber Laws of EU – USA – Australia -	
Britain, other specific Cyber laws	
Module-II:	6L
Computer Ethics, Privacy and Legislation: Computer ethics, moral and legal issues,	
descriptive and normative claims, Professional Ethics, code of ethics and professional	
conduct. Privacy, Computers and privacy issue, Digital Evidence Controls, Evidence	
Handling Procedures, Basics of Indian Evidence ACT, Legal Policies, legislative background	
Module-III:	6L
Intellectual Property Rights Issues: Copyrights, Jurisdiction Issues and Copyright	
Infringement, Multimedia and Copyright issues, WIPO, Intellectual Property Rights,	
Understanding Patents, Understanding Trademarks, Trademarks in Internet, Domain name	
registration, Software Piracy, Legal Issues in Cyber Contracts, Authorship, Document	
Forgery	
Module-IV:	8L
Indian IT Act and Standards: Indian IT ACT, Adjudication under Indian IT ACT, IT Service	
Management Concept, IT Audit standards, ISO/IEC 27000 Series, COBIT, HIPPA, SOX,	
System audit, Information security audit, ISMS, SoA (Statement of Applicability), BCP	
(Business Continuity Plan), DR (Disaster Recovery), RA (Risk Analysis/Assessment)	
Module-V:	4L
International Laws governing Cyber Space: Introduction to International Cyber Law,	
UNCITRAL, Cyber Laws: Legal Issues and Challenges in India, Net neutrality, Role of	
INTERPOL	

Reference Books

- 1. Computer Ethics-Deborah G. Johnson, Pearsons Education
- 2. Cyber Law Simplified-VivekSood, McGraw Hill Education
- 3. Cyber frauds, cybercrimes & law in India- Pavan Duggal, Saakshar Law Publications
- 4. The Internet Law of India: Indian Law Series- Shubham Sinha, CreateSpace Independent Publishing Platform 5. Principles of Information Security- Michael E. Whitman, Herbert J. Mattord, Course Technology

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	3	2	1	2	2	3	2	3
CO2	3	3	1	2	3	2	1	1	2	3	1	3

COURSE NAME: PRINCIPLES OF MANAGEMENT

COURSE CODE: HU(CE)801

CONTACT: 2:0:0

TOTAL CONTACT HOURS: 24 HRS

CREDITS: 2

Course Objective:

To acquaint the students with the steps involved in the planning, implementation, scheduling and control of projects.

Course Outcomes:

At the end of this course student will demonstrate the ability to:

CO-1: To identify the resources needed for each stage, project development including involved stakeholders, tools and supplementary material

- CO-2: To understand internal stakeholders with information regarding project costs by considering factors such as estimated cost, variances and profits
- CO-3: To understand the time needed to successfully complete a project, considering factors such as task dependencies and task lengths
- CO-4: To distinguish among the various tools for improving quality and how each should be used.
- CO-5: To implement project management knowledge, processes, lifecycle and the embodied concepts, tools and techniques in order to achieve project success.

Course Content:

UNIT-I: Project Management Concepts Attributes of a Project, Project Life Cycle, The Project management Process, Global Project Management, Benefits of Project Management, Needs Identification.

2L

UNIT-II: Project Selection, Preparing a Request for Proposal, Soliciting Proposals, Project organization, the project as part of the functional organization, pure project organization, the matrix organization, mixed organizational systems.

4L

UNIT-III: Project Planning and Scheduling: Design of project management system; project work system; work breakdown structure, project execution plan, work packaging plan, project procedure manual; project scheduling; bar charts, line of balance (LOB) and Network Techniques (PERT / CPM)/ Resource allocation, Crashing and Resource Sharing. **8L**

UNIT-IV: Project Monitoring/Control and Project Performance: Planning, Monitoring and Control; Design of monitoring system; Computerized PMIS (Project Management Information System). Coordination; Procedures, Meetings, Control; Scope/Progress control, Performance control, Schedule control, Cost control, Performance Indicators; Project Audit; Life Cycle, Responsibilities of Evaluator/ Auditor, Responsibilities of the Project Manager. Project Quality Management: Concept of Project Quality, TQM in Projects, Project Audit

UNIT-V: Cost Management estimating, budgeting, and controlling costs. **4L**

Reference Books:

- 1. Projects: Preparation, Appraisal, Budgeting and Implementation- Chandra, P. (2017). 8th Edition, Tata Mcgraw.
- 2. PERT & CPM principle and applications- L.S. Srinath , E.W.P. Ltd. New Delhi. 3. Network Analysis Techniques S.K. Bhatnagar, Willey Eastern Ltd.
- 4. Project Management K Nagrajan New Age International Ltd.
- 5. Professional Construction Management Barrie-Paulson-McGraw Hill Institute Edition.
- 6. Project Management Ahuja H.N. John Wiely, New York.
- 7. Project Management-Planning and Control---Rory Burkey 4th ed.—Wiley, Ind
- 8. Text Book of Project Management, Macmillan- Gopalkrishnan P. and Rama Mmoorthy
- 9. Project Management for Business and Technology Principles and Practice-Nicholas John M, Prentice Hall India, 2nd Edn.

CO-PO Mapping:

CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1	2	-	-	-	2	3	3	3	2	3	2	2	2	2	-
CO 2	2	3	-	2	-	-	2	-	3	-	3	-	2	2	-
CO 3	2	-	3	2	-	3	-	-	2	-	3	-	2	2	-
CO 4	-	2	-	3	2	3	-	2	-	-	-	-	2	2	-
CO 5	2	-	-	-	3	2	-	-	2	-	3	-	2	2	-

COURSE NAME: MAJOR PROJECT-II

COURSE CODE: PR881

CONTACT: 0:0:12

CREDIT: 6

Course Contents:

It is intended to start the project work early in the seventh semester. The poroject problem is expected to be completed in the seventh semester and the demonstration and report writing will be carried out in the eighth semester. The students in a group of 4 to 6 works on a topic are to be approved by the head of the department under the guidance of a faculty member. The students prepare a comprehensive project report after completing the work to the satisfaction of the supervisor to be submitted at the end of the semester. The progress of the project is evaluated by a committee may be constituted by the Head of the Department. The project work is evaluated based on oral presentation and the project report may jointly by external and internal examiners constituted by the Head of the Department.

COURSE NAME: GRAND VIVA

COURSE CODE: CE882

CREDIT: 1

Course Contents

The Comprehensive Viva-Voce will be conducted by a Committee consisting of Head of the Department and all Faculty members of the department. The Comprehensive Viva-Voce is intended to assess the student's understanding of the courses he/ she studied during the 4 years B. Tech. programme.