Course Name Physics II Laboratory

Course Code PH(EE)491

Course Credit 2
Contact Hour 3P

Prerequisite

Course Objective

The course objectives are:

- 1. Narrate the scientific details of various electronic & optical devices.
- 2. Explain the electronic transport phenomenon inside metal, insulator, semiconductors and related areas of applications.
- 3. Develop knowledge of underlying physics behind the magnetic and super conducting materials and their potential use in modern technology.
- 4. Apply various semiconducting devices for device operations such as sensor, detector, actuators.
- 5. Apply quantum mechanics and solid state physics to study organic semiconductors & nanomaterials related areas of applications.

Course Outcome

On completion of the course students will be able to

- 1. Define, understand and explain
 - Instruments used in spectroscopy
 - Oscilloscope (digital)
 - Solenoidal field, Magnetization, demagnetization
- 2. Apply the knowledge of
 - Hysteresis in magnetic storage
 - Photovoltaic action in solar cell
 - Band theory in operation of LED
- 3. Analyze
 - Role of magnetic field in changing resistance of a sample
- 4. Conduct experiments using
 - Intrinsic semiconductor
 - Temperature sensor
 - Photovoltaic cell, Light emitting diodes, Light dependent resistor
 - Various types of magnetic materials
 - Curie temperature of the given ferroelectric material
- 5. Communicate effectively, write reports and make effective presentation using available technology
 - on presentation of laboratory experiment reports
 - · on presentation of innovative experiments
- 6. Engage in independent self-study to formulate, design, enhance, demonstrate
 - Performing mini project with the lab

CO Mapping with departmental POs

H: High, M: Medium, L: Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	\checkmark											
CO 2		\checkmark										
CO 3			\checkmark									
CO 4	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark		
CO 5										\checkmark		
CO6			\checkmark	\checkmark		\checkmark			\checkmark			

Course Content:

Experiments on quantum mechanics ii & energy band theory

- 1. Determination of band gap of a semiconductors/thermistor/four probe method.
- 2. Determination of hall co-efficient of a semiconductor.
- 3. Measurement of magnetoresistance of a semiconductor.
- 4. Determination of velocity of ultrasonic wave using piezoelectric crystal.

Experiments on solid state electronic devices

- 5. Study of I-V characteristics of a thyristor
- 6. Study of I-V characteristics of a thermistor.
- 7. Study of drain characteristics and transfer characteristics of a MOSFET and hence determine the FET parameters (drain resistance, transconductance & amplification factor).
- 8. Study of I-V characteristics of a varactor diode
- 9. Study of I-V characteristics of tunnel diode.

Experiments on electric & magnetic properties of materials:

- 10. Study of hysteresis curve of a ferromagnetic material using CRO.
- 11. Use of paramagnetic resonance and determination of lande-g factor using esr setup.
- 12. Measurement of curie temperature of the given sample.
- 13. Measurement of specific charge of electron using crt.
- 14. Measurement of losses in a dielectric using LCR ckt.
- 15. Study of dipolar magnetic field.