Course Name Advanced Power System

Course Code EE703A

Course Credit 3
Contact Hour 3L

Prerequisite Power System I & II (EE502 & EE602)

Course Objective

The objectives of this course are

- 1. To produce electrical Power Systems graduates, who are employable in public and private industries/ Institutes/Organization, or pursue higher education.
- 2. To prepare graduates who have the ability to identify and address current and future problems in the domain of power systems, power electronics and electrical machines.
- 3. To inculcate research attitude and lifelong learning among graduates.

Course Outcomes (COs)

On completion of the course students will be able to

- 1. Acquire in-depth advance knowledge in the domain of modern and industrial oriental power systems.
- 2. Critically analyze various power systems components, models and their operation, optimization of cost criteria.
- 3. Fundamentals and concepts to analyze, formulate and solve complex problems of electrical power systems and its components and control of frequency and voltages.
- 4. Use advanced techniques, skills and modern scientific and engineering tools for professional practice for power system to enhanced power quality, reliability, security and load ability.

CO Mapping with departmental POs

H: High, M: Medium, L: Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	Н	Н	Н	Н	M							
CO 2	M	Н		Н	Н							
CO 3	Н	Н	L	Н	Н							
CO 4	Н	L		Н	Н							

Course Content

Module I: Objectives of Power System Operation

6L

Power Systems in Restructured Environment; Distributed and Dispersed Generation; Environment Aspects of Electric Power Generation.

Module II: Economic Operation of Energy Generation Systems

10L

Generation Cost Curves; Economic Operation of Thermal System; Plant Scheduling; Transmission Loss and Penalty Factor; Hydro-Thermal Scheduling; Concept of Reserves and Constraints; Unit Commitment.

Module III: Automatic Generation Control

8L

Concept of AVR and ALFC Loops, Significance of Double Loop in ALFC; Exciter and VAR Control; Single Area Load Frequency Control; Two Area Load Frequency Control; Frequency Response.

Module IV: Compensation in Power System

8L

Reactive Power Sensitivity and Voltage Control; Load Compensation with Capacitor Banks; Line Compensation with Reactors; Shunt and Series Compensation; Fixed Series Capacitors; Thyristor Controlled Series Capacitors; Introduction to SVC and STATCOM.

Module V: Power System Transients

8L

Types of System Transients; Overvoltage in Transmission Lines; Propagation of Surges and Travelling Waves; Protection Against Lightning and Surges;

Text Books:

- 1. Power System Engineering, Kothari & Nagrath, Mc Graw Hill
- 2. Power System Analysis, Granger and Stevension, Mc Graw Hill
- 3. Electric Power Genration operation and control, Wood and Woolenberg, Willey.

Reference Books:

- 1. Power system stability and Control, P. Kundur, Mc Graw Hill
- 2. Modern power system analysis, Kothari & Nagrath, Mc.Graw Hill
- 3. Power system Analysis, Nagsarkar & Sukhija, Pearson
- 4. Power system analysis, operation and control, Chakrabarti and Halder, PHI Book of Elgand.