Course Name Power Electronics Laboratory

Course Code EE694

Course Credit 2
Contact Hour 3L

Prerequisite

Course Objective

The objectives of this course are

- 1. To prepare students to perform the analysis of any power electronics circuit.
- 2. To study of the characteristics of different power electronics devices and how it's work.
- 3. Familiar with PSIM Software to study of the operation of different power electronics converter.
- 4. Using PSIM Software plot different circuit wave response and also find out the average value, peak value and RMS value of different voltages & currents.

Course Outcome

At the end of this course

- 1. The skill to analyze the response of any power electronics devices.
- 2. The ability to troubleshoot the operation of an power electronics circuit.
- 3. The ability to select suitable power electronic devices for a given application.
- 4. The ability to know how to control and convert output signal as per requirements.
- 5. The ability to construct any power electronics circuits as needed in operation.

CO Mapping with departmental POs

H: High, M: Medium, L: Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	Н			L								
CO 2		L		M								
CO 3	M	L		M					L			
CO 4	M			M					L			
CO 5	M	L		M								·

Course Content

- 1. Study of the characteristics of an SCR.
- 2. Study of the characteristics of a TRIAC
- 3. Study of different triggering circuits of an SCR.
- 4. Study of the operation of a single phase full controlled bridge converter with R and R-L load.
- 5. Study of performance of single phase half controlled symmetrical and asymmetrical bridge converters.
- 6. Study of performance of step down chopper with R and R-L load.
- 7. Study of performance of single phase controlled converter with and without source inductance (simulation)
- 8. Study of performance of step up and step down chopper with MOSFET, IGBT and GTO as switch (simulation).
- 9. Study of performance of single phase half controlled symmetrical and asymmetrical bridge

converter. (simulation)

- 10. Study of performance of three phase controlled converter with R & R-L load (simulation)
- 11. Study of performance of PWM bridge inverter using MOSFET as switch with R and R-L load. (simulation)