Course Name: Control System I LAB

Course Code: EE693

Course Credit: 2

Contact Hour: 3P

Prerequisite: MATLAB/ SIMULINK

Course Objective

The course objectives are:

- To make students familiar with digital and non linear control system toolbox and basic commands.
- 2. To make students accustomed with software based control technique, design & analysis.
- 3. To make them feel the features of computer based control in terms of : user friendly, accuracy, reliability, easy to edit.

Course Outcome

On completion of the course students will be able to

- 1. Analyze complex MIMO system using SV analysis.
- 2. Design compensators to perform a specific task.
- 3. Construct model of non linear systems and able to analyze system performance.
- 4. Design digital controllers and able to analyze system performance in discrete domain.
- 5. Understand effect of parameter variation on step response of a digital system.

CO Mapping with departmental POs

H: High, M: Medium, L: Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1		Н	M	L	Н							
CO 2	Н	Н	Н	Н	M							
CO 3	Н	M	Н	Н	M							
CO 4	Н	Н	Н	Н	M							
CO 5	Н	M	Н	Н	Н							

Course Content:

The following experiments are included in the course:

- 1. Obtain Transfer Function of a given system from State Variable model and vice versa.
- 2. State variable analysis of a physical system obtain step response for the system by simulation.
- 3. Determination of Z transform, inverse Z transform & pole zero map of a discrete system.
- 4. Study the effect of controller parameter variation on step response of a digital system.
- 5. Study the design of LEAD compensator to meet desired response of a continuous system.
- 6. Study the design of LAG compensator to meet desired response of a continuous system.
- 7. Study the design of LEAD LAG compensator to meet desired response of a continuous system.