Course Name Circuit Theory and Network Laboratory

Course Code EE391

Course Credit 2
Contact Hour 3P

Prerequisite Basic Electrical Engineering (EE101)

Course Objective

The objectives of this course are

- 1. The ability to conduct testing and experimental procedures on Transient analysis of different electrical circuits with and without initial conditions using Laplace Transform.
- 2. To give a chance to students to solve two port networks analysis.
- 3. The capability to analyze the Low and High Pass filter.
- 4. To prepare the students to have a basic constructional knowledge of Step, Ramp, Impulse, Sinusoidal, Cosinusoidal, Exponential, Gate signals.

Course Outcome

On completion of the course students will be able to

- 1. Solve the two port network analysis.
- 2. Select a suitable measuring instrument for a given electrical machine.
- 3. Conduct experimental investigation and gain knowledge of Filter circuit.
- 4. Solve the Laplace Transform and Inverse Laplace Transform.
- 5. Analyze the response of Step, Ramp, Impulse, Sinusoidal, Cosinusoidal, Exponential, and Gate signals.

CO Mapping with departmental POs

H: High, M: Medium, L: Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	Н			L								
CO 2		L		Н								
CO 3		L		Н								
CO 4	M			Н					L			
CO 5				M								

Course Content

- 1. Transient response of R-L-C series and parallel circuit: Simulation with MATLAB / Hardware
- 2. Determination of Impedance (Z) and Admittance (Y) parameter of two port network: Simulation with MATLAB / Hardware.
- 3. Frequency response of LP and HP filters: Simulation with MATLAB / Hardware.
- 4. Frequency response of BP and BR filters: Simulation with MATLAB /Hardware.
- 5. Generation of Periodic, Exponential, Sinusoidal, Damped Sinusoidal, Step, Impulse, Ramp signal using MATLAB in both discrete and Analog form.
- 6. Determination of Laplace transform and Inverse Laplace transform using MATLAB.
- 7. Amplitude and Phase spectrum analysis of different signals using MATLAB.
- 8. Verification of Network theorem using MATLAB.