Course Name: Data Structure and Algorithm

Course Code : CS(EE)401

Course Credit: 3

Contact Hour: 3L-1T

Prerequisite: Computer Fundamentals & Principle of Computer Programming

Engineering Mathematics

Course Objective

The objectives of this course are

- 1. Analyze the asymptotic performance of algorithms.
- 2. Demonstrate a familiarity with major algorithms and data structures.
- 3. Apply important algorithmic design paradigms and methods of analysis.
- 4. Synthesize efficient algorithms in common engineering design situations

Course Outcome

On completion of the course students will be able to

- 1. Analyze the problem complexity.
- 2. Use different kinds of data structures which are suited to different kinds of applications, and some are highly specialized to specific tasks. For example, B-trees are particularly well-suited for implementation of databases, while compiler implementations usually use hash tables to look up identifiers.
- 3. Manage large amounts of data efficiently, such as large databases and internet indexing services.
- 4. Use efficient data structures which are a key to designing efficient algorithms.
- 5. Use some formal design methods and programming languages which emphasize on data structures, rather than algorithms, as the key organizing factor in software design.
- 6. Store and retrieve data stored in both main memory and in secondary memory.

CO Mapping with departmental POs

H: High, M: Medium, L: Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	Н	Н	Н	Н	Н				Н			Н
CO 2	Н	Н	Н	Н	Н				Н			Н
CO 3	Н	Н	Н	Н	Н				Н			Н
CO 4	Н	Н	Н	Н	Н				Н			Н
CO 5	Н	Н	Н	Н	Н				Н			Н
CO 6	Н	Н	Н	Н	Н				Н			Н

Course Content:

Module I: 7L

Overview of C language: Array, Pointer, Structure, Function

Module II: 3L

Time and Space analysis of Algorithms: - Order Notations.

Module III: 7L

Linear Data Structures - Sequential representations - Arrays and Lists, Stacks, Queues and Dequeues, Application.

Module IV: 8L

Linear Data Structures - Link Representation - Linear linked lists, circularly linked lists. Doubly linked lists, application.

Module V: 10L

Non-linear Data Structure: Trees - Binary Trees, Traversals and Threads, Binary Search Trees, Insertion and Deletion algorithms, Height balanced and weight-balanced trees, B-trees, Application of trees; Graphs - Representations, Breadth-first and Depth-first Search.

Hashing - Hashing Functions, collision Resolution Techniques.

Module VI: 5L

Sorting and Searching Algorithms- Bubble sort, Selection Sort, Insertion Sort, Quick Sort.

Module VII: 5L

File Structures - Sequential and Direct Access. Indexed Files - B+ tree as index. Multi-indexed Files, Hashed Files.

Text Books:

- 1. Data Structures and Algorithms O.G. Kakde & U.A. Deshpandey, ISTE/EXCEL BOOKS
- 2. Aho Alfred V., Hopperoft John E., UIlman Jeffrey D., "Data Structures and Algorithms", Addison Wesley
- 3. Drozdek- Data Structures and Algorithms, Vikas

Reference Books:

- 1. Heileman: Data structure algorithms & Oop Tata McGraw Hill
- 2. Data Structures Using C M. Radhakrishnan and V. Srinivasan, ISTE/EXCEL BOOKS
- 3. Weiss Mark Allen, "Algorithms, Data Structures, and Problem Solving with C++", Addison Wesley.
- 4. Horowitz Ellis & Sartaj Sahni, "Fundamentals of Data Structures", Galgotria Pub.
- 5. Tanenbaum A. S., "Data Structures using 'C'"
- 6. Ajay Agarwal: Data structure Through C. Cybertech