Course Name Numerical Methods and Computer Programming

Course Code CS(EE)301

Course Credit 3

Contact Hour 3L-1T

Prerequisite Mathematics, C Programming

Course Objective

The objectives of this course are

- 1. To provide suitable and effective methods called Numerical Methods, for obtaining approximate representative numerical results of the problems.
- 2. To solve problems in the field of Applied Mathematics, Theoretical Physics and Engineering which requires computing of numerical results using certain raw data.
- 3. To solve complex mathematical problems using only simple arithmetic operations. The approach involves formulation of mathematical models of physical situations that can be solved with arithmetic operations.
- 4. To deal with various topics like finding roots of equations, solving systems of linear algebraic equations, interpolation and regression analysis, numerical integration & differentiation, solution of differential equation, boundary value problems, solution of matrix problems.
- 5. To facilitate numerical computing.

Course Outcome

On completion of the course students will be able to

- 1. Apply Numerical analysis which has enormous application in the field of Science and some fields of Engineering.
- 2. Familiar with finite precision computation.
- 3. Familiar with numerical solutions of nonlinear equations in a single variable.
- 4. Familiar with numerical integration and differentiation, numerical solution of ordinary differential equations.
- 5. Familiar with calculation and interpretation of errors in numerical method.
- 6. Familiar with programming with numerical packages like MATLAB

CO Mapping with departmental POs

H: High, M: Medium, L: Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1		Н				L	Н			M	L	Н
CO 2		M			L	M		L	M			L
CO 3		M			L	M		L	M			
CO 4	Н			L	M		L	M	M			L
CO 5	Н		L		M							M
CO 6	Н			M				L				

Course Content

Module I: 6L

Approximation in numerical computation: Truncation and rounding errors, Fixed and floating-point arithmetic, Propagation of errors and corresponding programming.

Module II: 10L

Interpolation: Newton forward/backward interpolation, Lagrange's and Newton's divided difference Interpolation and corresponding programming.

Module III: 6L

Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Expression for corresponding error terms and corresponding programming.

Module IV: 8L

Numerical solution of a system of linear equations: Gauss elimination method, Matrix inversion, LU Factorization method, Gauss-Seidel iterative method and corresponding programming.

Module V: 6L

Numerical solution of Algebraic equation: Bisection method, Regula-Falsi method, Newton-Raphson method and corresponding programming.

Module VI: 8L

Numerical solution of ordinary differential equation: Euler's method, Runge-Kutta methods, Predictor-Corrector Methods and Finite Difference method and corresponding programming.

Text Books

- 1. C.Xavier: C Language and Numerical Methods.
- 2. Dutta & Jana: Introductory Numerical Analysis.
- 3. J.B.Scarborough: Numerical Mathematical Analysis.
- 4. Jain, Iyengar, & Jain: Numerical Methods (Problems and Solution).

Reference Books

- 1. Balagurusamy: Numerical Methods, Scitech.
- 2. Baburam: Numerical Methods, Pearson Education.
- 3. N. Dutta: Computer Programming & Numerical Analysis, Universities Press.
- 4. Soumen Guha & Rajesh Srivastava: Numerical Methods, OUP.
- 5. Srimanta Pal: Numerical Methods, OUP.